
Table of Contents
Computing at NAS..1

Computing Overview...1

Computing Hardware...2
Pleiades...2

Pleiades: Introduction...2
Pleiades Hardware Overview...3
Pleiades Configuration Details...6
Harpertown Processors..10
Nehalem-EP Processors..12
Westmere Processors..15
Comparison among Harpertown, Nehalem-EP and Westmere............................17
Pleiades Home Filesystem...19
Pleiades Lustre Filesystems...20
Pleiades Front-End Usage Guidelines...23
Pleiades Interconnect...25

Columbia..27
Columbia: Introduction...27
Columbia Hardware Overview..28
Columbia Configuration Details..30
Columbia Home Filesystems..34
Columbia CXFS Filesystems..35
Columbia Front-End Usage Guidelines..37

Porting & Developing Applications..39
Porting & Developing: Overview..39
Endian and Related Environment Variables or Compiler Options.............................40
OpenMP..43
Compilers...47

Intel Compiler...47
GNU Compiler Collection...49

MPI Libraries..50
SGI MPT...50
MVAPICH...51

Math & Scientific Libraries...52
MKL..52
SCSL..56
MKL FFTW Interface..57

Program Development Tools...58
Recommended Intel Compiler Debugging Options..58
Totalview..61
Totalview Debugging on Pleiades..62
Totalview Debugging on Columbia...65
IDB...67
GDB..68
Using pdsh_gdb for Debugging Pleiades PBS Jobs..69

Porting to Pleiades...70

Table of Contents
Porting & Developing Applications

Recommended compiler options..70
With SGI's MPT..73
With MVAPICH...78
With Intel-MPI...80
With OpenMP...82
With SGI's MPI and Intel OpenMP...84
With MVAPICH and Intel OpenMP...86

Porting to Columbia...87
Default or Recommended compiler version and options......................................87
Porting to Columbia: With SGI's MPT..88
Porting to Columbia: With OpenMP...90
Porting to Columbia: With MPI and OpenMP...91

Software Environment...92
Software: Overview..92
Operating Systems..93
Modules...94
Table of All Modules..96
Licensed Application Software...99

Licensed Application Software: Overview..99
Tecplot..100
IDL..101
LS-DYNA..102
Matlab...103
Gaussian..104
FieldView..105
Ensight...106
Gridgen...107

Running Jobs with PBS...108
Portable Batch System (PBS): Overview...108
Job Accounting..110
Job Accounting Utilities..111
Multiple GIDs and Charging to a specific GID...113
Commonly Used PBS Commands...114
Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line...117
New Features in PBS..119
Checkpointing and Restart..121
PBS Environment Variables..122
PBS Scheduling Policy..123
PBS exit codes..126
Front-End Usage Guidelines...128

Pleiades Front-End Usage Guidelines...128
Columbia Front-End Usage Guidelines..130

PBS on Pleiades..132
Overview..132

Table of Contents
Running Jobs with PBS

Queue Structure...133
Mission Shares Policy on Pleiades..135
Resources Request Examples...138
Default Variables Set by PBS...141
Sample PBS Script for Pleiades...142
Pleiades devel Queue..144

PBS on Columbia..146
Overview..146
Resources Request Examples...147
Default Variables Set by PBS...148
Sample PBS Script for Columbia...149

Troubleshooting PBS Jobs..150
Common Reasons for Being Unable to Submit Jobs...150
Common Reasons Why Jobs Won't Start..152
Using pdsh_gdb for Debugging Pleiades PBS Jobs..154

Effective Use of PBS...155
Streamlining File Transfers from Pleiades Compute Nodes to Lou...................155
Avoiding Job Failure from Overfilling /PBS/spool...156
Running Multiple Serial Jobs to Reduce Walltime..157
Checking the Time Remaining in a PBS Job from a Fortran Code....................160

Best Practices...162
Streamlining File Transfers from Pleiades Compute Nodes to Lou.........................162
Increasing File Transfer Rates...163
Effective Use of Resources with PBS..164

Streamlining File Transfers from Pleiades Compute Nodes to Lou...................164
Avoiding Job Failure from Overfilling /PBS/spool...165
Running Multiple Serial Jobs to Reduce Walltime..166
Checking the Time Remaining in a PBS Job from a Fortran Code....................169

Memory Usage on Pleiades...171
Memory Usage Overview...171
Checking memory usage of a batch job using qps...173
Checking memory usage pf a batch job using qtop.pl..174
Checking memory usage of a batch job using qsh.pl and "cat

 /proc/meminfo"...175
Checking memory usage of a batch job using gm.x...176
Checking if a Job was Killed by the OOM Killer...178
How to get more memory for your job..180

Lustre on Pleiades...182
Lustre Basics..182
Pleiades Lustre Filesystems...185
Lustre Best Practices...188
Lustre Filesystem Statistics in PBS Output File...193

Computing at NAS

Computing Overview

Once you have gone through the steps of getting an allocation and account, setting up your
environment on your local machine to securely connect to a NAS high-end computing
system; and customizing your NAS environment, then you are ready to utilize our
supercomputing resources for actual work.

Reading through the following articles will help you through the next steps:

Hardware Overviews: Pleiades and Columbia•
Software: Overview•
Porting and Developing: Overview•
anything you need to know about running jobs•

Computing at NAS 1

http://www.nas.nasa.gov/kb/33/

Computing Hardware

Pleiades

Pleiades: Introduction

Pleiades is the primary supercomputer at NAS. Originally installed in 2008 with 51,200
cores, it has been further expanded at various stages. The following articles provide
hardware information at varying levels of detail:

Pleiades Hardware Overview - a high-level overview of the Pleiades system
architecture, including resource summaries of the compute and front-end nodes, the
interconnect, and the storage capacity.

•

Pleiades Configuration Details - focuses on the hardware hierarchy (from the
processors to the whole cluster) and provides more detailed configuration statistics
on the processors and their associated memory.

•

Harpertown Processors, Nehalem-EP Processors, and Westmere Processors (3
articles) - provide configuration diagrams and additional information such as core
labeling, instruction set, hyperthreading, and Turbo Boost, for each of Pleiades' three
processor types.

•

Comparison among Harpertown, Nehalem-EP, and Westmere - points out the
differences and similarities among the three processor types.

•

Pleiades Home Filesystem - information on quota and backup policies on the home
filesystem.

•

Pleiades Lustre Filesystems - details the configurations of the Lustre filesystems and
users' quotas on these filesystems.

•

Pleiades Interconnect - information on the topology, latency, and bandwidth of the
Pleiades InfiniBand fabric.

•

Pleiades Front-End Usage Guidelines - guidelines on using the front-end nodes and
bridge nodes.

•

Computing Hardware 2

Pleiades Hardware Overview

Pleiades, the seventh most powerful supercomputer in the world, represents NASA's
state-of-the-art technology for meeting the agency's supercomputing requirements,
enabling NASA scientists and engineers to conduct modeling and simulation for NASA
missions. This distributed-memory SGI ICE cluster is connected with InfiniBand in a
dual-plan hypercube technology.

This system contains the following types of Intel Xeon processors: X5670 (Westmere),
X5570 (Nehalem), and E5472 (Harpertown). Pleiades is named after the astronomical open
star cluster of the same name.

System Architecture

Manufacturer - SGI•
184 racks (11,766 nodes)•
1.33 Pflop/s peak cluster•
1.09 Pflop/s sustained performance (June 2011)•
Total cores: 112,540•
Total memory: 188TB•
Nodes

4,544 Westmere nodes
2 six-core processors per node◊
Xeon X5670 (Westmere) processors◊
Processor speed - 2.93GHz◊
Cache - 12MB Intel Smart Cache for 6 cores◊
Memory Type - DDR3 FB-DIMMs◊
2GB per core, 24GB per node◊
InfiniBand® QDR host channel adapter◊

♦

1,280 Nehalem nodes
2 quad-core processors per node◊
Xeon X5570 (Nehalem) processors◊
Processor speed - 2.93GHz◊
Cache - 8MB Intel Smart Cache for 4 cores◊
Memory Type - DDR3 FB-DIMMs◊
3GB per core, 24GB per node◊
InfiniBand® DDR host channel adapter◊

♦

5,888 Harpertown nodes
2 quad-core processors per node◊
Xeon E5472 (Harpertown) processors◊
Processor speed - 3GHz◊
Cache - 6MB per pair of cores◊
Memory Type - DDR2 FB-DIMMs◊
1GB per core, 8GB per node◊
InfiniBand® DDR host channel adapter◊

♦

•

Pleiades Hardware Overview 3

Subsystems

14 front-end nodes
2 quad-core processors per node◊
Xeon E5472 (Harpertown) processors◊
Processor speed - 3GHz◊
16 GB per node◊
1 Gigabit Ethernet connection◊

•

2 bridge nodes
2 quad-core processors per node◊
Xeon E5472 (Harpertown) processors◊
Processor speed - 3GHz◊
64 GB per node◊
10 Gigabit Ethernet connection◊

•

1 PBS server
2 quad-core processors per node◊
Xeon E5472 (Harpertown) processors◊
Processor speed - 3GHz◊
16 GB per node◊

•

Interconnects

Internode - InfiniBand, with all nodes connected in a partial 11D hypercube•
Two independent InfiniBand fabrics (ib0, ib1)•
Infiniband DDR, QDR•
Gigabit Ethernet management network•

Storage

SGI® InfiniteStorage NEXIS 9000 home filesystem•
12 DDN 9900 RAIDs - 6.9 PB total•
7 Oracle Lustre cluster-wide filesystems, each containing:

1 Metadata server (MDS)♦
8 Object Storage Servers (OSS)♦
60 - 120 Object Storage Targets (OST)♦

•

Operating Environment

Operating system - SUSE® Linux®•
Job Scheduler - PBS®•
Compilers - Intel and GNU C, C++ and Fortran•
MPI - SGI MPT, MVAPICH2, Intel MPI•

Related Links

Links related to the Pleiades system.

Pleiades Hardware Overview 4

Pleiades Configuration Details•
Pleiades Front-End Usage Guidelines•

Pleiades Hardware Overview 5

Pleiades Configuration Details

DRAFT

This article is being reviewed for completeness and technical accuracy.

Pleiades Hardware Hierarchy

The hardware hierarchy from a single processor to the whole Pleiades supercluster is
described below:

one quad-core (Harpertown, Nehalem-EP) or 6-core (Westmere) processor per
socket

•

2 sockets in 1 node•
16 compute nodes (labeled as n0 - n15) in 1 IRU (individual rack units)•
4 IRUs (labeled as i0 - i3) in 1 rack•
91 Harpertown racks (labeled as r1-r91);
20 Nehalem-EP racks (labeled as r161-170, r177-186):
and 73 Westmere racks (labeled as r129-160, r171-176, r187-218, r219, r221-r222)
in the Pleiades supercluster

•

The nomenclature of a Pleiades compute node is based on which rack and IRU it is on. For
example, r1i0n15 is the node 15 in IRU 0 of rack 1.

Below are the front views of a typical rack:

Pleiades Configuration Details 6

Front view of a rack Front-open view of a rack
(includes 4 IRUs)

Processor and Memory Subsystems Statistics

Below are detailed configuration statistics for the processor and memory subsystems for all
Pleiades nodes:

Pleiades Processor and Memory Subsustems Statistics

Hostname pfe[1-12]
bridge[1-2]

pbspl1,
pbspl3 r[1-91]i[0-3]n[0-15] r[161-170,177-186]i[0-3]n[0-15]

r[129-160,171-176,187-218,
219, 221-222]
i[0-3]n[0-15]

Function

front-end
* bridge node
with Columbia
CXFS
filesystems
mounted

PBS server compute compute compute

Architecture ICE 8200EX ICE 8200EX ICE 8200EX ICE 8200EX ICE 8400EX
Processor

CPU Quad-Core
Xeon E5472
(Harpertown)

Quad-Core
Xeon E5472
(Harpertown)

Quad-Core
Xeon E5472
(Harpertown)

Quad-Core
Xeon X5570
(Nehalem-EP)

6-Core
Xeon X5670/X5675
(r221-222)

Pleiades Configuration Details 7

(Westmere)
CPU-Clock 3.00 GHz 3.00 GHz 3.00 GHz 2.93 GHz 2.93/3.07 (r221-222) GHz
Floating Point
Operations
per cycle per
Core

4 4 4 4 4

of
Cores/blade
(or node)

8 8 8 8 12

Total # of
nodes . . 5,824 1,280 4,672

Total # of
Cores . . 46,592 10,240 56,064

Memory

L1 Cache

Local to each
core;
Instruction
cache: 32K
Data cache:
32K;
32B/cycle;

Local to each
core;
Instruction
cache: 32K
Data cache:
32K;
32B/cycle;

Local to each core;
Instruction cache:
32K
Data cache: 32K;
32B/cycle;

Local to each core;
Instruction cache:
32K
Data cache: 32K;
32B/cycle;

Local to each core;
Instruction cache: 32K
Data cache: 32K;
32B/cycle;

L2 Cache

12MB on-die
for the
Quad-Core;
6MB per core
pair; shared
by the two
cores.

12MB on-die
for the
Quad-Core;
6MB per core
pair; shared
by the two
cores. L2
Cache speed:
3 GHz

12MB on-die for the
Quad-Core; 6MB
per core pair;
shared by the two
cores. L2 Cache
speed: 3 GHz

256 KB per core 256 KB per core

L3 Cache N/A N/A N/A 8 MB shared by the
four cores

12 MB shared by the six
cores

TLB local to each
core

local to each
core local to each core local to each core local to each core

Default Page
Size 4 KB 4 KB 4 KB 4 KB 4 KB

Local
Memory/Core

2 GB
(pfe[1-12]);
8 GB
(bridge[1-2];
Fully
Buffered
DDR2 DIMM

2 GB 1 GB 3 GB; DDR3 2 GB: DDR3

16 GB 8 GB 24 GB 24 / 48(r219) GB

Pleiades Configuration Details 8

Total
Memory/node

16 GB
(pfe[1-12]); 64
GB
(bridge[1-2])

Front-Side
Bus

1600 MHz;
25.6 GB/sec
read
12.8 GB/sec
write

1600 MHz;
25.6 GB/sec
read
12.8 GB/sec
write

1600 MHz;
25.6 GB/sec read
12.8 GB/sec write

N/A N/A

Memory
Controller N/A N/A N/A 32 GB/sec

read/write 32 GB/sec read/write

QuickPath
Interconnect N/A N/A N/A 25.6 GB/sec 25.6 GB/sec

One of the Harpertown racks, rack 32, provides 16 GB of memory per node, double the size
of per-node memory available in the other Harpertown racks.

Related articles:

Pleiades Hardware Overview

Harpertown Processors

Nehalem-EP Processors

Westmere Processors

Comparison among Harpertown, Nehalem-EP, and Westmere

Pleiades Home Filesystem

Pleiades Lustre Filesystems

Pleiades Front-End Usage Guidelines

Pleiades Configuration Details 9

Harpertown Processors

DRAFT

This article is being reviewed for completeness and technical accuracy.

Configuration of a Harpertown node:

Core Labeling:

The core labeling as shown in this diagram is obtained from the command cat /proc/cpuinfo.
Note that in the first socket (i.e., phyiscal id=0), the four cores are labeled 0, 2, 4, and 6,
and are not contiguous. Similarly, in the second socket (physical id=1), they are labeled as
1, 3, 5, and 7. In addition, each core pair (0,2), (4,6), (1,3) and (5,7) shares a 6MB L2
cache.

Harpertown Processors 10

For performance consideration, care must be taken if one tries to use tools such as dplace
to pin processes to specific processors. Be aware of the non-contiguous nature of the
labeling and the sharing of L2 cache per core pair. Also, when using the SGI MPT library,
the environment variable MPI_DSM_DISTRIBUTE has been set to off for the Harpertown
nodes since setting MPI_DSM_DISTRIBUTE to on causes the processes to be pinned to
processors in a contiguous order. For example, MPI ranks 0-7 are pinned to processors
0-7, respectively. This results in bad performances for most applications.

SSE4 Instruction Set:

Intel's Streaming SIMD Extensions 4.1 (SSE4.1) instruction set is included in the
Harpertown processors.

Since the instruction set is upward compatible, an application which is compiled with
-xSSE4.1 (with Intel version 11 compiler) can run on either Harpertown or Nehalem-EP or
Westmere processors. An application which is compiled with -xSSE4.2 can run ONLY on
Nehalem-EP or Westmere processors.

If you wish to have a single executable that will run on any of the three Pleiades processor
types with suitable optimization to be determined at run time, you can compile your
application with -O3 -ipo -axSSE4.2,xSSE4.1

Hyperthreading:

Not available.

Turbo Boost:

Not available.

Front-Side Bus

The Harpertown (Quad-Core Intel Xeon Processor E5472) processors at NAS use 1600
MHz Front-Side Bus (FSB). The processor transfers data four times per bus clock (4X data
transfer rate, as in AGP 4X). Along with the 4X data bus, the address bus can deliver
addresses two times per bus clock and is referred to as a double-clocked or a 2X address
bus. In addition, the Request Phase completes in one clock cycle. Working together, the 4X
data bus and 2X address bus provide a data bus bandwidth of up to 12.8 GBytes per
second. The FSB is also used to deliver interrupts.

Harpertown Processors 11

Nehalem-EP Processors

DRAFT

This article is being reviewed for completeness and technical accuracy.

Configuration of a Nehalem-EP node:

Core Labeling:

Unlike Harpertown, the core labeling in Nehalem-EP (and also Westmere) is contiguous.
That is, cores 0-3 are in first socket and cores 4-7 are in the second socket.

When using the SGI MPT library, the enviroment variable MPI_DSM_DISTRIBUTE is set to
on by default for the Nehalem-EP (and also Westmere) nodes.

SSE4 Instruction Set:

Nehalem-EP Processors 12

Intel's Streaming SIMD Extensions 4.2 (SSE4.2) instruction set is included in the
Nehalem-EP processors.

Since the instruction set is upward compatible, an application that is compiled with
-xSSE4.1 (with Intel version 11 compiler) can run on either Harpertown or Nehalem-EP or
Westmere processors. An application that is compiled with -xSSE4.2 can run ONLY on
Nehalem-EP or Westmere processors.

If you wish to have a single executable that will run on any of the three Pleiades processor
types with suitable optimization to be determined at run time, you can compile your
application with -O3 -ipo -axSSE4.2,xSSE4.1

Hyperthreading:

On Nehalem-EP (and also Westmere), hyperthreading is available by user request, for
example by asking for more than 8 MPI ranks per Nehalem-EP node.

When hyperthreading is requested, the OS views each physical core as two logical
processors and can assign two threads to it.

Preliminary benchmarking by NAS shows that many jobs would benefit from using
hyperthreading. Therefore, it is currently turned ON, meaning that it is available if a job
requests it.

Mapping of Physical Cores and Logical Processor
IDs

Physical id Core id
Processor id
Hyperthreading
OFF

Processor id
Hyperthreading
ON

0 0 0 0 ; 8
0 1 1 1 ; 9
0 2 2 2 ; 10
0 3 3 3 ; 11
1 4 4 4 ; 12
1 5 5 5 ; 13
1 6 6 6 ; 14
1 7 7 7 ; 15

With hyperthreading, one can run an MPI code with 16 processes instead of just 8 per
Nehalem-EP node. Each of the 16 processes will be assigned to run on one logical
processor. In reality, two processes are running on the same physical core. If one process
does not keep the functional units in the core busy all the time and can share the resources
in the core with another process, then running in this mode will take less than 2 times the
walltime compared to running only 1 process on the core. This can improve the overall

Nehalem-EP Processors 13

throughput as demonstrated in the following example:

Example: Consider the following scenario with a job that uses 16 MPI ranks. Without
hyperthreading we would use:

#PBS -lselect=2:ncpus=8:mpiprocs=8 -lplace=scatter:excl

and the job will use 2 nodes with 8 processes per node. Suppose that the job takes 1000
seconds when run this way. If we run the job with hyperthreading, e.g.:

#PBS -lselect=1:ncpus=16:mpiprocs=16 -lplace=scatter:excl

then the job will use 1 node with all 16 processes running on that node. Suppose this job
takes 1800 seconds to complete.

Without hyperthreading, we used 2 nodes for 1000 seconds (a total of 2000 node-seconds);
with hyperthreading we used 1 node for 1800 seconds (1800 node-seconds). Thus, under
these circumstances, if you were interested in getting the best wall-clock time performance
for a single job, you would use two nodes without hyperthreading. However, if you were
interested in minimizing resource usage, especially with multiple jobs running
simultaneously, use of hyperthreading would save you 10%.

An added benefit of using fewer nodes with hyperthreading, is that when Pleiades is loaded
with many jobs, asking for half as many nodes may allow your job to start running sooner,
resulting with an improvement in the throughput of your jobs.

Caution: Hyperthreading does not benefit all applications. Some applications may also
show improvement with some process counts but not with other process counts (e.g., a
256-process Overflow job shows benefit with hyperthreading, while a 32-process Overflow
job does not). There may also be other unforeseen issues with hyperthreading. Users
should test their applications with and without hyperthreading before making a choice for
production runs. If your application runs more than 2 times slower with hyperthreading than
without hyperthreading, then it should not be used.

Turbo Boost:

On Nehalem-EP (and also Westmere), Turbo Boost is available.

When Turbo Boost is enabled, idle cores are turned off and and power is channeled to the
cores that are active, making them more efficient. The net effect is that the active cores
perform above their clock speed (i.e., overclocked).

Turbo Boost mode is set up in the system BIOS. It is currently set to OFF.

Nehalem-EP Processors 14

Westmere Processors

DRAFT

This article is being reviewed for completeness and technical accuracy.

Configuration of a Westmere node:

Core Labeling:

Unlike Harpertown, the core labeling in Westmere is contiguous. That is, cores 0-5 are in
first socket and cores 6-11 are in the second socket.

When using the SGI MPT library, the enviroment variable MPI_DSM_DISTRIBUTE is set to
on by default for the Westmere nodes.

SSE4 Instruction Set:

Westmere Processors 15

Intel's Streaming SIMD Extensions 4.2 (SSE4.2) instruction set is included in the Westmere
processors.

Since the instruction set is upward compatible, an application that is compiled with
-xSSE4.1 (with Intel version 11 compiler) can run on either Harpertown or Nehalem-EP or
Westmere processors. An application that is compiled with -xSSE4.2 can run ONLY on
Nehalem-EP or Westmere processors.

If you wish to have a single executable that will run on any of the three Pleiades processor
types with suitable optimization to be determined at run time, you can compile your
application with -O3 -ipo -axSSE4.2,xSSE4.1

Hyperthreading:

Hyperthreading is available by user request on the Westmere nodes (for example, by
asking for more than 12 ranks per node).

Turbo Boost:

Turbo Boost is set to off on the Westmere nodes.

Westmere Processors 16

Comparison among Harpertown, Nehalem-EP and Westmere

DRAFT

This article is being reviewed for completeness and technical accuracy.

Among the three processor types used in Pleiades, Nehalem-EP and Westmere are very
similar to each other, while Harpertown is significantly different from the other two.

The main differences between Nehalem-EP and Westmere processors are:

Both Nehalem-EP and Westmere have 24 GB of memory per node. However, there
are 8 cores per Nehalem-EP node vs 12 cores per Westmere node, resulting in more
memory per core for Nehalem-EP (3 GB/core) than Westmere (2 GB/core).

•

The size of the L3 cache is 8 MB per quad-core for Nehalem-EP while it is 12 MB
per 6-core for Westmere.

•

For inter-node communication, two devices are involved: the Infiniband switches and
the host channel adapter chip (HCA). For both the Nehalem-EP and Westmere
racks, there are two SGI Infiniband QDR switches per half-IRU (which comprises 8
nodes). One of the switches is used for ib0 (used mainly for MPI communication),
and the other for ib1 (used mainly for IO). The maximum raw data transfer rate
through these switches is 40 Gigabits per second (Gbps). However, the HCA on
each motherboard (one node per motherboard) is different for Nehalem-EP and
Westmere. For Nehalem-EP, a 4x DDR HCA with a raw data transfer rate of 20
Gbps is used. For Westmere, a 4x QDR HCA with a rate of 40 Gbps is used. This
difference results in better inter-node communication performance between the
Westmere nodes than between the Nehalem-EP nodes.

Note: The communication path between pairs of nodes vary, depending on where
the nodes are relative to each other. For example:

two nodes on the same half-IRU: HCA to IB switch on the half-IRU to HCA.♦
two nodes on the same IRU but different half-IRUs: HCA to IB switch (of one
half-IRU) to IB switch (of the other half-IRU) to HCA.

♦

•

The main differences between Harpertown and Nehalem-EP/Westmere processors are:

The processor labeling in Harpertown is not contiguous. On the contrary, the labeling
in Nehalem-EP/Westmere is contiguous.

•

Nehalem-EP/Westmere incorporates the SSE 4.2 SIMD instructions, which adds 7
new instructions to the SSE 4.1 set in Harpertown.

•

Comparison among Harpertown, Nehalem-EP and Westmere 17

Every two cores in Harpertown share a common L2 cache, while every core in
Nehalem-EP/Westmere has its own private L2 cache. In addition, there is a L3 cache
shared by the four cores in each socket of Nehalem-EP (or by the 6 cores in each
socket of Westmere), while there is none for Harpertown.

•

The Nehalem-EP based nodes have 3 GB/core (i.e., 24 GB/node) of memory as
compared to 1 GB/core (i.e., 8 GB/node) in most of the Harpertown-based nodes in
Pleiades.

The Westmere based nodes have 2 GB/core (i.e., 24 GB/node) of memory as
compared to 1 GB/core (i.e., 8 GB/node) in most of the Harpertown-based nodes in
Pleiades.

•

Nehalem-EP/Westmere, with a higher ratio of memory bandwidth to processor
speed, is a better balanced system than the Harpertown.

The key features which enable this improvement are the Intel QuickPath
Interconnect, which provides communication with the other processor on the same
node, and an integrated memory controller. Together they result in a higher
aggregate bandwidth.

In addition, each Nehalem-EP/Westmere core has its own L1 and L2 cache which
helps to decrease the number of stalls in a data path. The data pre-fetch algorithm
for L2 and L3 caches has been substantially reworked to achieve more effective data
loads.

•

Hyperthreading and TurboBoost are additional features on Nehalem-EP/Westmere,
but not for Harpertown. Hyperthreading is available by user request for
Nehalem-EP/Westmere. Turbo Boost is set to off for Nehalem-EP/Westmere.

•

Comparison among Harpertown, Nehalem-EP and Westmere 18

Pleiades Home Filesystem

DRAFT

This article is being reviewed for completeness and technical accuracy.

The home file system on Pleiades (/u/username) is an SGI NEXIS 9000 filesystem. It is
NFS-mounted on all of the Pleiades front-ends, bridge nodes and compute nodes.

Once a user is granted an account on Pleiades, the home directory is set up automatically
during his/her first login.

Quota and Policy

Disk space quota limits are enforced on the home filesystem. By default, the soft limit is
8GB and the hard limit is 10GB. There are no inode limits on the home filesystem.

To check your quota and usage on your home filesystem, do:

%quota -v
Disk quotas for user username (uid xxxx):
 Filesystem blocks quota limit grace files quota limit grace
saturn-ib1-0:/mnt/home2
 7380152 8000000 40000000 190950 0 0

The quota policy for NAS states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of your grace period remains. It is
expected that a user will occasionally exceed their soft limit as needed, however after 14
days, users who are still over their soft limit will have their batch queue access to Pleiades
disabled. If you believe that you have a long-term need for higher quota limits, you
should send an email justification to support@nas.nasa.gov. This will be reviewed by the
HECC Deputy Project Manager, Bill Thigpen, for approval.

The quota policy for NAS can be found here.

Backup Policy

Files on the home filesystem are backed up daily.

Pleiades Home Filesystem 19

Pleiades Lustre Filesystems

Pleiades has several Lustre filesystems (/nobackupp[10-60]) that provide a total of about 3
PB of storage and serve thousands of cores. These filesystems are managed under Lustre
software version 1.8.2.

Lustre filesystem configurations are summarized at the end of this article.

Which /nobackup should I use?

Once you are granted an account on Pleiades, you will be assigned to use one of the
Lustre filesystems. You can find out which Lustre filesystem you have been assigned to by
doing the following:

pfe1% ls -l /nobackup/your_username
lrwxrwxrwx 1 root root 19 Feb 23 2010 /nobackup/username -> /nobackupp30/username

In the above example, the user is assigned to /nobackupp30 and a symlink is created to
point the user's default /nobackup to /nobackupp30.

TIP: Each Pleiades Lustre filesystem is shared among many users. To get good I/O
performance for your applications and avoid impeding I/O operations of other users, read
the articles: Lustre Basics and Lustre Best Practices.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the /nobackup filesystems. The default soft
and hard limits for inodes are 75,000 and 100,000, respectively. Those for the disk space
are 200GB and 400GB, respectively. To check your disk space and inodes usage and
quota on your /nobackup, use the lfs command and type the following:

%lfs quota -u username /nobackup/username
Disk quotas for user username (uid xxxx):
 Filesystem kbytes quota limit grace files quota limit grace
/nobackup/username 1234 210000000 420000000 - 567 75000 100000 -

The NAS quota policy states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of your grace period remains. It is
expected that users will occasionally exceed their soft limit, as needed; however after 14
days, users who are still over their soft limit will have their batch queue access to Pleiades
disabled.

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

Pleiades Lustre Filesystems 20

mailto:support@nas.nasa.gov

For more information, see also, Quota Policy on Disk Space and Files.

NOTE: If you reach the hard limit while your job is running, the job will die prematurely
without providing useful messages in the PBS output/error files. A Lustre error with code
-122 in the system log file indicates that you are over your quota.

In addition, when a Lustre filesystem is full, jobs writing to it will hang. A Lustre error with
code -28 in the system log file indicates that the filesystem is full. The NAS Control Room
staff normally will send out emails to the top users of a filesystem asking them to clean up
their files.

Important: Backup Policy

As the names suggest, these filesystems are not backed up, so any files that are removed
cannot be restored. Essential data should be stored on Lou1-3 or onto other more
permanent storage.

 Configurations

In the table below, /nobackupp[10-60] have been abbreviated as p[10-60].

Pleiades Lustre Configurations
Filesystem p10 p20 p30 p40 p50 p60
of MDSes 1 1 1 1 1 1
of MDTs 1 1 1 1 1 1
size of MDTs 1.1T 1.0T 1.2T 0.6T 0.6T 0.6T
of usable inodes on
MDTs ~235x10^6 ~115x10^6 ~110x10^6 ~57x10^6 ~113x10^6 ~123x10^6

of OSSes 8 8 8 8 8 8
of OSTs 120 60 120 60 60 60
size/OST 7.2T 7.2T 3.5T 3.5T 7.2T 7.2T
Total Space 862T 431T 422T 213T 431T 431T
Default Stripe Size 4M 4M 4M 4M 4M 4M
Default Stripe Count 1 1 1 1 1 1

NOTE: The default stripe count and stripe size were changed on January 13, 2011. For
directories created prior to this change, if you did not explictly set the stripe count and/or
stripe size, the default values (stripe count 4 and stripe size 1MB) were used. This means
that files created prior to January 13, 2011 had those old default values. After this date,
directories without an explicit setting of stripe count and/or stripe size adopted the new
stripe count of 1 and stripe size of 4MB. However, the old files in that directory will retain
their old default values. New files that you create in these directories will adopt the new

Pleiades Lustre Filesystems 21

default values.

Pleiades Lustre Filesystems 22

Pleiades Front-End Usage Guidelines

DRAFT

This article is being reviewed for completeness and technical accuracy.

The front-end systems pfe[1-12] and bridge[1,2] provide an environment that allows you to
get quick turnaround while performing the following:

file editing•
compiling•
short debugging and testing session•
batch job submission to the compute systems•

Bridge[1,2], with 4 times the memory on pfe[1-12] and better interconnects, can also be
used for the following two functions:

Post processing

These nodes have 64-bit versions of IDL, Matlab, and Tecplot installed and have 64
GB of memory (4 times the amount of memory on pfe[1-12]). The bridge nodes will
run these applications much faster than on pfe[1-12].

1.

File transfer between Pleiades and Columbia or Lou

Note that both the Pleiades Lustre filesystems (/nobackupp[10-70]) and the
Columbia CXFS filesystems (/nobackup1[1-h], /nobackup2[a-i]) are mounted on the
bridge nodes.

To copy files between the Pleiades Lustre and Columbia CXFS filesystems, log in to
bridge[1,2] and use the cp command to perform the transfer. The 10 Gigabit Ethernet
(GigE) connections on the two bridge nodes are faster than the 1 GigE used on
pfe[1-12], therefore, file transfer out of Pleiades is improved when using the bridge
nodes.

File transfers from bridge[1,2] to Lou[1,2] will go over the 10 GigE interface by
default. The commands scp, bbftp, and bbscp are available to do file transfers. Since
bbscp uses almost the same syntax as scp, but performs faster than scp, we
recommend using bbscp over scp in cases where you do not require the data to be
encrypted when sent over the network.

The pfe systems ([pfe1-12]) have a 1 GigE connection, which
can be saturated by a single secure copy (scp). You will see
bad performance whenever more than one file transfer is
happening. Use of bridge1 and bridge2 for file transfers is

2.

Pleiades Front-End Usage Guidelines 23

strongly recommended.

File transfers from the compute nodes to Lou must go through pfe[1-12] or
bridge[1,2] first, although going through bridge[1,2] is preferred for performance
consideration. See Transferring Files from the Pleiades Compute Nodes to Lou for
more information.

When sending data to Lou[1-2], please keep your largest individual file size under 1
TB, as large files will keep all of the tape drives busy, preventing other file restores
and backups. To prevent the filesystems on Lou[1-2] from filling up, please limit total
data transfers to 1 TB and then wait an hour before continuing. This allows the tape
drives to write the data to tape.

Additional restrictions apply to using these front-end systems:

No MPI jobs are allowed to run on pfe[1-12], bridge[1,2]1.

A job on pfe[1-12] should not use more than 8 GB. When it does, a courtesy email is
sent to the owner of the job.

2.

A job on bridge[1,2] should not use more than 56 GB. When it does, a courtesy email
is sent to the owner of the job.

3.

Pleiades Front-End Usage Guidelines 24

Pleiades Interconnect

DRAFT

This article is being reviewed for completeness and technical accuracy.

Topology

InfiniBand (IB) is used for inter-node communication among all of the Pleiades nodes. A key
feature of InfiniBand permits remote direct memory access (RDMA) between processing
nodes, allowing direct access to other nodes' memory. This allows developers and
application owners to bypass the TCP/IP stack, accelerating the application performance.
Two devices are involved in the interconnect: the Mellanox ConnectX host channel adapter
chip (HCA) on the motherboard of each node and the Mellanox IB switches. There are two
IB switches per half- IRU (which includes 8 nodes). One of the switches is involved in the
ib0 fabric, which is used mainly for MPI communication. The other is involved in the ib1
fabric which is used mainly for I/O. InfiniBand uses subnet manager (SM) software to
manage the InfiniBand fabric and to monitor interconnect performance and health at the
fabric level.

The network topology of each IB fabric of Pleiades is a partial 11-D hypercube. In a 11-D
hypercube, each switch has 11 direct connections with 11 other specific switches in the
network.

The ib1 hypercube fabric is extended by a set of nine switches connected to the Lustre
servers (one for the MDSes, and eight for the OSSes). The plan is for each rack to connect
directly to one of the OSS switches and each group of eight racks to connect directly to the
MDS switch. Currently, most of the racks are connected this way, but some remain to be
connected.

Another set of nine switches on the ib1 fabric provides direct access between hyperwall
visualization nodes and Pleiades nodes and Lustre servers.

Latency

The shortest communication path in a Pleiades IB fabric will be for any two nodes located in
the same half-IRU of the same rack such that the communication only needs to go through
1 switch. For a fully populated 11-D hypercube, the optimum communication path between
any two nodes which are not in the same half-IRU varies from going through 2 to 12
switches, depending on which racks and half-IRUs the two nodes reside. Since the
Pleiades IB fabric is not a full 11-D hypercube, some connections are missing that would
facilitate the optimum path between some nodes, therefore, it is possible that some
communications may go over more than 12 switches.

Pleiades Interconnect 25

MPI half Ping-Pong latency starts around 1000 to 1500 ns for communication going through
two switches. Each additional switch adds ~100 ns (QDR) to ~150 ns (DDR) to the latency.

Bandwidth

The HCA on each node uses either 4x DDR (double data rate) links or 4x QDR (quad data
rate) links. Each link is bi-directional and contains 1 send channel and 1 receive channel.
For each direction, the raw data transfer rates for 4x DDR and 4x QDR are 20 Gb/s and 40
Gb/s, respectively. These links use 8b/10b encoding such that every 10 bits sent carry 8
bits of useful data. Thus, for each direction, the effective maximum bandwidth for each
node is 16 Gb/s (i.e, 2 GB/s) if 4x DDR HCA is used or 32 Gb/s (i.e. 4 GB/sec) if 4x QDR
HCA is used.

The IB switch which every 8 nodes in each half-IRU share through a single path also has
similar effective data transfer limits per port: 16 Gb/s for 4x DDR IB switches and 32 Gb/s
for 4x QDR IB switches.

The Harpertown and Nehalem-EP nodes use 4x-DDR HCAs while the Westmere nodes
use 4x-QDR HCAs. The Harpertown racks use 4x DDR IB switches while the Nehalem-EP
and Westmere racks use 4x QDR switches.

These limits also apply to each OSS in the Lustre filesystem. For /nobackupp20 and
/nobackupp50, QDR switches are used to connect to the IB fabric and DDR switches are
used to connect to the DDNs of the hard disks. For /nobackupp[10,30,40,60], DDR switches
are used to connect to both IB fabric and to the DDNs. With DDR switches, the theoretical
bandwidth of each OSS is 2 GB/s for each direction. With 8 OSSes per Lustre filesystem,
the theoretical peak aggregate bandwidth for each filesystem for each direction would be 16
GB/s. This bandwidth however is reduced to 10 GB/s due to bandwidth that the DDNs can
provide. The best benchmark performance obtained for each Pleiades Lustre filesystem is 8
- 10 GB/sec (all read or all write).

The actual I/O bandwidth a user's application experiences is far less than the theoretical
peak or even the benchmark data due to factors such as the I/O pattern the application is
doing (for example, serial or parallel; for parallel, if the I/O requests are from nodes of
different half-IRUs), the number of stripe count used (this affects the maximum aggregate
bandwidth provided by the OSSs), how busy the Lustre is handling requests from many
users, if there are bad links in the network, etc.

Follow the tips listed in Lustre Best Practices if you are not getting good performances out
of the Lustre filesystem.

Pleiades Interconnect 26

Columbia

Columbia: Introduction

Columbia, an SGI Altix supercomuter named to honor the crew of Space Shuttle Columbia
flight STS-107, has been in production since 2004. In March 2008, the system had 14,136
cores in 24 nodes (Columbia1-Columbia24). When the Pleiades system came into
production, the original 20 Columbia nodes (1-20) were retired. Columbia currently
comprises 1 front-end node (cfe2) and 4 compute nodes (Columbia21-Columbia24).

The following few articles provide Columbia hardware information at varying levels of detail:

Columbia Hardware Overview provides a high-level overview of the Columbia system
architecture, including resource summaries of the compute- and front-end nodes, the
interconnect, and storage capacity.

Columbia Configuration Details focuses on more detailed configuration statistics of the
processors and their associated memory.

The article Columbia Home Filesystem - provides information on the quota and backup
policies on the home filesystem.

The article Columbia CXFS Filesystems - details the configurations of the CXFS filesystems
and users' quotas on these filesystems.

In addition, the article Columbia Front-End Usage Guidelines provides guidelines on using
the front-end node (cfe2).

Columbia 27

http://www.nasa.gov/columbia/home/index.html
http://www.nasa.gov/columbia/home/index.html

Columbia Hardware Overview

DRAFT

This article is being reviewed for completeness and technical accuracy.

Columbia Supercomputer

The Columbia supercluster, which ranked 2nd (51.87 Tflops/s) in the Nov 2004 Top500 list,
has been in service for many years. Most of the earlier Columbia nodes (Columbia1 -
Columbia20) have been retired. The remaining Columbia nodes (Columbia21-24) continue
to serve the NASA community to achieve breakthroughs in science and engineering for the
agency's missions and vision for Space Exploration.

Current Columbia System Facts

Manufacturer - SGI

List of nodes for Columbia system
Nodes Type Speed Cache
1 Altix 4700 (512 cores) Montecito 1.6 GHz 9MB
1 Altix 4700 (2048 cores) Montecito 1.6 GHz 9MB
2 Altix 4700 (1024 cores) Montvale 1.6 GHz 9MB
4 Total Compute Nodes (4,608 Total Cores)

System Architecture

40 compute node cabinets•
30 teraflop/s theoretical peak (original 10,240 system: 63 Tflop/s)•

Subsystems

1 front-end node•

Memory

Type - double data rate synchronous dynamic random access memory (DDR
SDRAM)

•

Per Processor (core) - 2GB•
Total Memory - 9TB•

Interconnects

Columbia Hardware Overview 28

SGI® NUMAlink® interconnected single-system image compute nodes•
Internode

InfiniBand® - 4x (Single Data Rate, Double Data Rate)♦
10Gb Ethernet LAN/WAN interconnect♦
1Gb Ethernet LAN/WAN interconnect♦

•

Storage

Online - DataDirect Networks® & LSI® RAID, 1PB (raw)
1 SGI CXFS domains♦
Local SGI XFS fileystems♦

•

Archival - Attached to high-end computing SGI CXFS SAN filesystem•

Operating Environment

Operating system - SUSE Linux Enterprise•
Job Scheduler - PBS®•
Compilers - C, Intel Fortran, SGI MPT•

Columbia Hardware Overview 29

Columbia Configuration Details

DRAFT

This article is being reviewed for completeness and technical accuracy.

Current Columbia compute nodes, Columbia21-24, are SGI Altix 4700 systems. Detailed
information about the processor and memory subsystems of these compute nodes are
provided in this article.

Processor and Memory Subsystems Statistics

Below are configuration statistics for the processor and memory subsystems for
Columbia21-24:

Columbia Processor and Memory Subsystems Statistics
Hostname Columbia21 Columbia22 Columbia23-24
Function compute compute compute

Architecture Altix 4700 (bandwidth
configuration)

Altix 4700 (density
configuration)

Altix 4700 (density
configuration)

Dual-Core Processor

Processor Itanium2 9040
(Montecito)

Itanium2 9040
(Montecito)

Itanium2 9150M
(Montvale)

Core-Clock 1.6 GHz 1.6 GHz 1.67 GHz
of Cores/Node 2 4 4
Nodes/Blade 1 1 1
Total # of Blades 256 512 256
Total # of Cores 512 2048 1024

Memory
Local Memory/Node
(2 Cores for C21 and 4
Cores for C22,
C23-24)

~3.8 GB ~7.6 GB ~7.6 GB

Total Memory ~ 1000 GB ~ 4000 GB ~ 2000 GB

L1 Cache Size/Core
32KB (split into
instruction and data
cache)

32KB (split into
instruction and data
cache)

32KB (split into
instruction and data
cache)

L1 Cache Associativity 4-way 4-way 4-way
L1 Cache Line Size 64 bytes 64 bytes 64 bytes

L2 Cache Size/Core 1MB: instructions
256KB: data

1MB: instructions
256KB: data

1MB: instructions
256KB: data

Columbia Configuration Details 30

L2 Cache Associativity 8-way 8-way 8-way
L2 Cache Line Size 128 bytes 128 bytes 128 bytes
L3 Cache Size/Core 9MB 9MB 9MB
L3 Cache Associativity 9-way 9-way 9-way
Default Page Size 16 KB 64 KB 16 KB

Itanium-64 Processors Facts

The Itanium chip is based on the IA-64 (Intel Architecture, 64 bit) architecture that
implements the EPIC (Explicit Parallel Instruction set Computing) technology. With
EPIC, an Itanium processor family compiler turns sequential code into parallelized
128-bit bundles that can be directly or explicitly processed by the CPU without
having to interpret it further. This explicit expression of parallelism allows the
processor to concentrate on executing parallel code as fast as possible, without
further optimizations or interpretations. On the contrary, a regular (non-Itanium's
processor family) compiler takes a sequential code and examines and optimizes it
for parallelism, but then has to regenerate sequential code in a such a way that the
processor can re-extract the parallelization from it. The processor then has to read
this implied parallelism from the machine code, re-build it, and run it. The parallelism
is there, but it is not as obvious to the processor, and more work has to be done by
the hardware before it can be utilized.

•

Unlike the RISC processors (as used in the SGI Origins) that dedicate an enormous
amount of chip real estate and logic to hide cache misses (by allowing instructions to
be executed out of order, which works well when the ratio of CPU frequency to
memory frequency is relatively small), the EPIC processors rely on the software to
make sure that the data is in the proper cache at the proper time. Instructions are
issued in order, so there is no hardware mechanism to hide a cache miss.

•

The Itanium processors use long instruction words. Specifically, three instructions
are grouped into a 128-bit bundle. Each instruction is 41 bits wide. The least
significant 5 bits encode a bundle template. The template field encodes (1) the
execution units (integer units I, memory units M, floating point units F, and branch
units B) needed by the three instructions, and (2) which instructions can be executed
in parallel. For the Itanium2 chips, two bundles can be executed per cycle.

•

Four memory-load operations per cycle can be delivered from the L2 cache to the
floating-point register file. This will completely support two floating-point operations
per cycle; this translates into 4 FLOPS per cycle using the FMA operation.

•

Branch predication: without predication, parallelism would be impossible. Instead of
waiting for each section of a complex calculation to finish, it is faster if the processor
can predict the outcome and proceed on the basis of that prediction. These
prediction points are called branches, and current processors try to guess which
branch to take. If it predicts correctly, the whole calculation is validated. If it predicts
incorrectly, the string has to be thrown out and the calculation starts over. The
Itanium processor family architecture minimizes wasted calculations by taking both
possible paths to the next branch, where it follows both branches again. When it
comes to the correct result it drops the other branch path that it doesn't need, keeps

•

Columbia Configuration Details 31

the branch that it does and it continues on with the calculation.
Speculative loads; a processor needs to access the memory to get code to execute,
but while it fetches this code it is not executing instructions. A processor based on
the Itanium processor family architecture specification can look ahead at its
instruction and load the required data from the memory early; so, when those
instructions begin to execute, they have the required data, even if the loaded data
changes.

•

128 integer registers; up to 96 rotating

Note: 32 registers are fixed and 96 are "stacked". A procedure call can allocate up to
96 of the stacked registers and still has access to the 32 common registers. Each
procedure has its own register frame, which is flexible in size. Since most procedure
calls will allocate only a few new registers, many calls can be made before the
physical limits of the register file are exceeded. A dedicated piece of hardware called
the Register Stack Engine (RSE) will quickly and automatically spill older registers to
free up space in the register stack for the new request. The RSE will also restore
spilled registers as needed.

•

128 floating-point registers; up to 96 rotating•
64 1-bit predicate registers; up to 48 rotating•
8 branch registers•
128 application registers (for example, loop or epilog counters for loop optimization)•
Performance Monitor Unit (PMU)•
Advanced Load Address Table (ALAT) ALAT keeps track of speculative, or advance
loads. However, an excessive number of ALAT comparisons that result in a failed
advance load will seriously degrade performance.

•

3 predicated instructions in a single 128-bit bundle•
2 bundles (that is, 6 instructions) per clock cycle•
6 integer units•
2 loads and 2 stores per clock cycle•
11 issue ports•

Main Memory - Global Shared Memory

SGI Altix systems dramatically reduce the time and resources required to run applications
by managing extremely large data sets in a single, system-wide, shared-memory space
called global shared memory. Global shared memory means that a single memory address
space is visible to all system resources, including microprocessors and I/O, across all
nodes. Systems with global shared memory allow access to all data in the system's
memory directly and efficiently, without having to move data through I/O or network
bottlenecks. On the contrary, clusters with multiple nodes without global shared memory
must pass copies of data, often in the form of messages, which can greatly complicate
programming and slow down performance by increasing the time processors must wait for
data.

If an Altix system is configured as a multi-partition cluster, global shared memory can be
achieved by using a sophisticated system memory interconnect like SGI's NUMAlink and

Columbia Configuration Details 32

application libraries that enable shared-memory calls, such as MPT and XPMEM (a driver
which allows shared memory across partitions) from SGI.

To configure an Altix system as a single system image machine, special versions of a
scalable operation system from SGI is used and no XPMEM is needed. The current version
of the OS used is "2.6.16.60-0.42.9.1-nasa64k #1 SMP".

The SGI Altix systems use the non-uniform memory access (NUMA) model. Memory
subsystems from different nodes are connected through SHUB and NUMAlink
interconnects.

Latency:

The local memory latency (within a node) is about 145 nanoseconds (ns). Latency from the
other node of the same C-brick is 290 ns. Each additional router hop adds 45 - 50 ns (for
NUMAlink 3 protocol). Each meter of NUMAlink cable adds 10 ns.

Maximum number of router hops:

16 CPUs - 3 hops•
32 CPUs - 4 hops•
64 CPUs - 5 hops•
128 CPUs - 5 hops•
256 CPUs - 7 hops•

Bandwidth:

The Altix memory subsystem uses PC-style double data rate (DDR) SDRAM DIMMs. Each
SHUB supports four DDR buses. Each DDR bus may contain up to four DIMMs. The four
memory buses are independent and can operate simultaneously to provide up to 12.8
GB/sec of memory bandwidth. (Local memory bandwidth for DIMM type PC2700 is 10.2
GB/sec; and for type PC3200, it is 12.8 GB/sec.) While the local processor bus has a peak
bandwidth (between L3 cache and memory) of 6.4 GB per second, the local memory
subsystem has enough bandwidth to fully saturate the local processor demands while
leaving available bandwidth to service remote processor and I/O memory requests.

Columbia Configuration Details 33

Columbia Home Filesystems

DRAFT

This article is being reviewed for completeness and technical accuracy.

Columbia's home fileystem (/u/username) is NFS-mounted on the Columbia front-end
(cfe2) and compute nodes (Columbia21-24).

Once a user is granted an account on Columbia, the home directory is set up automatically
during his/her first login.

Quota and Policy

Disk space quota limits are enforced on the home filesystem. By default, the soft limit is
4GB and the hard limit is 5GB. There are no inode limits on the home filesystem.

To check your quota and usage on your home filesystem, do:

%quota -v
Disk quotas for user username (uid xxxx):
 Filesystem blocks quota limit grace files quota limit grace
 ch-rg1:/home6 4888 4000000 5000000 294 0 0

The quota policy for NAS states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of your grace period remains. It is
expected that a user will occasionally exceed their soft limit as needed; however after 14
days, users who are still over their soft limit will have their batch queue access to Pleiades
disabled. If you believe that you have a long-term need for higher quota limits, you should
send an email justification to support@nas.nasa.gov. This will be reviewed by the HECC
Deputy Project Manager, Bill Thigpen, for approval.

The quota policy for NAS can be found here.

Backup Policy

Files on the home filesystem are backed up daily.

Columbia Home Filesystems 34

Columbia CXFS Filesystems

Columbia CXFS filesystems (/nobackup[1-2][a-i]) are shared and accessible from cfe2 and
Columbia21-24. This allows user jobs to be load-balanced across Columbia's systems
without forcing users to move their data to a particular Columbia system.

Users will have a nobackup directory on one of these shared file systems. To find out where
your nobackup directory is, log in to the front-end node and type the following shell
command:

cfe2% ls -d /nobackup[1-2][a-i]/$USER
/nobackup1f/username/

In this example, the user is assigned to /nobackup1f.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the CXFS /nobackup[1-2][a-i] filesystems.
The default soft and hard limits for inodes are 25,000 and 50,000, respectively. Those for
disk space are 200GB and 400GB, respectively. To check your disk space and inodes
usage and quotas on your CXFS filesystem, do the following:

cfe2% quota -v
Disk quotas for user username (uid xxxx):
 Filesystem blocks quota limit grace files quota limit grace
/dev/cxvm/nobackup1f
 1673856 210000000 420000000 10973 25000 50000

The NAS quota policy states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of your grace period remains. It is
expected that users will occasionally exceed their soft limit, as needed; however after 14
days, users who are still over their soft limit will have their batch queue access to Columbia
disabled.

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

For more information, see also, Quota Policy on Disk Space and Files.

Important: Backup Policy

As the names suggest, these filesystems are not backed up, so any files that are removed
cannot be restored. Essential data should be stored on Lou1-3 or onto other more
permanent storage.

Columbia CXFS Filesystems 35

mailto:support@nas.nasa.gov

Accessing CXFS from Lou

The Columbia CXFS filesystems are also mounted on Lou1-3. This allows you to copy files
between the CXFS filesystems and your Lou home filesystem, using the cp or cxfscp
commands on Lou.

Columbia CXFS Filesystems 36

Columbia Front-End Usage Guidelines

DRAFT

This article is being reviewed for completeness and technical accuracy.

The front-end system, cfe2, provide an environment that allows users to get quick
turnaround while performing the following: file editing; file management; short debugging
and testing sessions; and batch job submission to the compute systems.

Running long and/or large (in terms of memory and/or number of processors) debugging or
production jobs interactively or in the background of cfe2 is considered to be inconsiderate
behavior to the rest of the user community. If you need help submitting such jobs to the
batch systems, please contact a NAS scientific consultant at (650) 604-4444 or
1-800-331-USER or send e-mail to: support@nas.nasa.gov

Jobs that cause significant impact on the system load of the Columbia front-end machine
(cfe2) are candidates for removal in order to bring the front-end systems back to a normal
and smooth environment for all users. A cron job regularly monitors the system load and
determines if job removal is necessary. The criteria for job removal are described below.
Owners of any removed jobs will receive a notification e-mail.

To be eligible for removal, the number of processors a front-end interactive job uses
can be one (1) or more. Exceptions to this are those programs, utilities, etc. common
to users and/or NASA missions that are listed in an "exception file". Examples of
these would be:

bash cp csh emacs gzip rsync scp sftp sh ssh tar tcsh

Users can submit program names to be added to this exception file by mailing
requests to: support@nas.nasa.gov

1.

For qualifying processes, the CPU time usage of each process in a job has, on the
average, exceeded a threshold defined as:

(20 min x 8 / number of processes for the job)

That is, a baseline for removal is a job with 8 processors running for more than 20
minutes. The maximum amount of time allowed for each processor in a job is scaled
using the formula:

20 min x 8 cpu / number-of-processes

Therefore, the following variations are possible:

160 minutes = (20 * 8) / 1 cpu♦

2.

Columbia Front-End Usage Guidelines 37

80 minutes = (20 * 8) / 2 cpu♦
40 minutes = (20 * 8) / 4 cpu♦
20 minutes = (20 * 8) / 8 cpu♦
10 minutes = (20 * 8) / 16 cpu♦
5 minutes = (20 * 8) / 32 cpu♦
2.5 minutes = (20 * 8) / 64 cpu♦

The conditions of removal are subject to change, when necessary.

Columbia Front-End Usage Guidelines 38

Porting & Developing Applications

Porting & Developing: Overview

DRAFT

This article is being reviewed for completeness and technical accuracy.

When you are in the process of developing a code or porting a code from another platform,
it is important that the code runs correctly and/or reproduces the results from another
platform.

These are some steps you can follow when developing or porting a code or when testing a
new version of a compiler.

General guidelines:

Start with small problem sizes and a few time steps/iterations so that you won't have
to wait in the queue for a long time just to check whether the program is running
correctly. Setting up your PBS script, data files, and getting the program to run
correctly can often be done with 10 minute jobs.

•

Use PBS' debug queue to get better turn-around time (q=debug).•
While porting, make the fewest changes possible in the code.•
Use the same data sets to compare results on both old and new platforms.•
Don't assume that an absence of error messages means the program is running
correctly on either the old or the new platforms.

•

Be attentive to porting user data files. Fortran FORM='unformatted' files cannot be
assumed to be portable.

•

Don't assume that the new platform is wrong and the old platform is right. Both might
be wrong.

•

Other useful information that helps you to port or develop a code on NAS HECC systems
can be found in subsequent articles.

Porting & Developing Applications 39

Endian and Related Environment Variables or Compiler
Options

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel Fortran expects numeric data, both integer and floating-point data, to be in native little
endian order, in which the least-significant, right-most zero bit (bit 0) or byte has a lower
address than the most-significant, left-most bit (or byte).

If your program needs to read or write unformatted data files that are not in little endian
order, you can use one of the six methods (listed in the order of precedence) provided by
Intel below.

Set an environment variable for a specific unit number before the file is opened. The
environment variable is named FORT_CONVERTn, where n is the unit number. For
example:

setenv FORT_CONVERT28 BIG_ENDIAN

No source code modification or recompilation is needed.

1.

Set an environment variable for a specific file name extension before the file is
opened. The environment variable is named FORT_CONVERT.ext or
FORT_CONVERT_ext, where ext is the file name extension (suffix). The following
example specifies that a file with an extension of .dat is in big endian format:

setenv FORT_CONVERT.DAT BIG_ENDIAN

Some Linux command shells may not accept a dot (.) for environment variable
names. In that case, use FORT_CONVERT_ext instead.

No source code modification or recompilation is needed.

2.

Set an environment variable for a set of units before any files are opened. The
environment variable is named F_UFMTENDIAN.

Syntax:

Csh: setenv F_UFMTENDIAN MODE;EXCEPTION

Sh : export F_UFMTENDIAN=MODE;EXCEPTION

3.

Endian and Related Environment Variables or Compiler Options 40

MODE = big | little

EXCEPTION = big:ULIST | little:ULIST | ULIST

ULIST = U | ULIST,U

U = decimal | decimal-decimal

MODE defines the current format of the data, represented in the files; it can be
omitted. The keyword "little" means that the data have little- endian format and will
not be converted. For IA-32 systems, this keyword is a default. The keyword "big"
means that the data have big endian format and will be converted. This keyword may
be omitted together with the colon.

EXCEPTION is intended to define the list of exclusions for MODE; it can be omitted.
EXCEPTION keyword (little or big) defines data format in the files that are connected
to the units from the EXCEPTION list. This value overrides MODE value for the units
listed.

Each list member U is a simple unit number or a number of units. The number of list
members is limited to 64. decimal is a non-negative decimal number less than 2**32.

The environment variable value should be enclosed in quotes if the semicolon is
present.

Converted data should have basic data types, or arrays of basic data types. Derived
data types are disabled.

Example:

setenv F_UFMTENDIAN big

All input/output operations perform conversion from big-endian to little-endian
on READ and from little-endian to big-endian on WRITE.

♦

setenv F_UFMTENDIAN "little;big:10,20"

or setenv F_UFMTENDIAN big:10,20

or setenv F_UFMTENDIAN 10,20

In this case, only on unit numbers 10 and 20 the input/output operations
perform big-little endian conversion.

♦

setenv F_UFMTENDIAN "big;little:8"♦

Endian and Related Environment Variables or Compiler Options 41

In this case, on unit number 8 no conversion operation occurs. On all other
units, the input/output operations perform big-little endian conversion.

setenv F_UFMTENDIAN 10-20

Define 10, 11, 12, ...19, 20 units for conversion purposes; on these units, the
input/output operations perform big-little endian conversion.

♦

Specify the CONVERT keyword in the OPEN statement for a specific unit number.
Note that a hard-coded OPEN statement CONVERT keyword value cannot be
changed after compile time. The following OPEN statement specifies that the file
graph3.dat is in VAXD unformatted format:

OPEN (CONVERT='VAXD', FILE='graph3.dat', FORM='UNFORMATTED',
UNIT=15)

4.

Compile the program with an OPTIONS statement that specifies the
CONVERT=keyword qualifier. This method affects all unit numbers using
unformatted data specified by the program. For example, to use VAX F_floating and
G_floating as the unformatted file format, specify the following OPTIONS statement:

OPTIONS /CONVERT=VAXG

5.

Compile the program with the command-line -convert keyword option, which affects
all unit numbers that use unformatted data specified by the program. For example,
the following command compiles program file.for to use VAXD floating-point data for
all unit numbers:

ifort file.for -o vconvert.exe -convert vaxd

6.

In addition, if the record length of your unformatted data is in byte units (Intel Fortran default
is in word units), use the -assume byterecl compiler option when compiling your source
code.

Endian and Related Environment Variables or Compiler Options 42

OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

OpenMP is a portable, scalable model that gives shared-memory parallel programmers a
simple and flexible interface for developing parallel applications for various platforms.

Intel version 11.x compilers support OpenMP spec-3.0 while 10.x compilers support
spec-2.5.

Building OpenMP Applications

The following Intel compiler options can be used for building or analyzing OpenMP
applications:

-openmp

Enables the parallelizer to generate multithreaded code based on OpenMP
directives. The code can be executed in parallel on both uniprocessor and
multiprocessor systems. The -openmp option works with both -O0 (no optimization)
and any optimization level of -O. Specifying -O0 with -openmp helps to debug
OpenMP applications.

Note that setting -openmp also sets -automatic, which causes all local, non-SAVEd
variables to be allocated to the run-time stack, which may provide a performance
gain for your applications. However, if your program depends on variables having the
same value as the last time the routine was invoked, your program may not function
properly. If you want to cause variables to be placed in static memory, specify option
-save. If you want only scalar variables of certain intrinsic types (integer, real,
complex, logical) to be placed on the run-time stack, specify option -auto-scalar.

•

-assume cc_omp or -assume nocc_omp

-assume cc_omp enables conditional compilation as defined by the OpenMP Fortran
API. That is, when "!$space" appears in free-form source or "c$spaces" appears in
column 1 of fixed-form source, the rest of the line is accepted as a Fortran line.

-assume nocc_omp tells the compiler that conditional compilation as defined by the
OpenMP Fortran API is disabled unless option -openmp (Linux) or /Qopenmp
(Windows) is specified.

•

-openmp-lib legacy or -openmp-lib compat

Choosing -openmp-lib legacy tells the compiler to use the legacy OpenMP run-time

•

OpenMP 43

library (libguide). This setting does not provide compatibility with object files created
using other compilers. This is the default for Intel version 10.x compilers.

Choosing -openmp-lib compat tells the compiler to use the compatibility OpenMP
run-time library (libiomp). This is the default for Intel version 11.x compilers.

On Linux systems, the compatibility Intel OpenMP run-time library lets you combine
OpenMP object files compiled with the GNUgcc or gfortran compilers with similar
OpenMP object files compiled with the Intel C/C++ or Fortran compilers. The linking
phase results in a single, coherent copy of the run-time library.

You cannot link object files generated by the Intel® Fortran compiler to object files
compiled by the GNU Fortran compiler, regardless of the presence or absence of the
-openmp (Linux) or /Qopenmp (Windows) compiler option. This is because the
Fortran run-time libraries are incompatible.

NOTE: The compatibility OpenMP run-time library is not compatible with object files
created using versions of the Intel compiler earlier than 10.0.

-openmp-link dynamic or -openmp-link static

Choosing -openmp-link dynamic tells the compiler to link to dynamic OpenMP
run-time libraries. This is the default for Intel version 11.x compilers.

Choosing -openmp-link static tells the compiler to link to static OpenMP run-time
libraries.

Note that the compiler options -static-intel and -shared-intel have no effect on which
OpenMP run-time library is linked.

Note that this option is only available for newer Intel compilers (version 11.x).

•

-openmp-profile

Enables analysis of OpenMP applications. To use this option, you must have Intel(R)
Thread Profiler installed, which is one of the Intel(R) Threading Tools. If this
threading tool is not installed, this option has no effect.

Note that Intel Thread Profiler is not installed on Pleiades.

•

-openmp-report[n]

Controls the level of diagnostic messages of the OpenMP parallelizer. n=0,1,or 2.

•

-openmp-stub

Enables compilation of OpenMP programs in sequential mode. The OpenMP

•

OpenMP 44

directives are ignored and a stub OpenMP library is linked.

OpenMP Environment Variables

There are a few OpenMP environment variables one can set. The most commonly used
are:

OMP_NUM_THREADS num

Sets number of threads for parallel regions. Default is 1 on Pleiades. Note that you
can use ompthreads in the PBS resource request to set values for
OMP_NUM_THREADS. For example:

%qsub -I -lselect=1:ncpus=4:ompthreads=4
Job 991014.pbspl1.nas.nasa.gov started on Sun Sep 12 11:33:06 PDT 2010
...
PBS r3i2n9> echo $OMP_NUM_THREADS
4
PBS r3i2n9>

•

OMP_SCHEDULE type[,chunk]

Sets the run-time schedule type and chunk size. Valid OpenMP schedule types are
static, dynamic, guided, or auto. Chunk is a positive integer.

•

OMP_DYNAMIC true or OMP_DYNAMIC false

Enables or disables dynamic adjustment of threads to use for parallel regions.

•

OMP_STACKSIZE size

Specifies size of stack for threads created by the OpenMP implementation. Valid
values for size (a positive integer) are size, sizeB, sizeK, sizeM, sizeG. If units B, K,
M or G are not specified, size is measured in kilobytes (K).

Note that this feature is included in OpenMP spec-3.0, but not in spec-2.5.

•

Note that Intel also provides a few additional environment variables. The most commonly
used are:

KMP_AFFINITY type

Binds OpenMP threads to physical processors. Avaiable type: compact, disabled,
explicit, none, scatter. For more information on the various types, see this Intel web
page.

There is a conflict between KMP_AFFINITY in Intel 11.x runtime

•

OpenMP 45

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2009/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm#KMP_AFFINITY_Environment_Variable
http://software.intel.com/sites/products/documentation/studio/composer/en-us/2009/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm#KMP_AFFINITY_Environment_Variable

library and dplace, causing all threads to be placed on a
single CPU when both are used. It is recommended that
KMP_AFFINITY be set to disabled when using dplace.

KMP_MONITOR_STACKSIZE

Sets stacksize in bytes for monitor thread.

•

KMP_STACKSIZE

Sets stacksize in bytes for each thread.

•

For more information, please see the official OpenMP web site.

OpenMP 46

http://openmp.org/wp/

Compilers

Intel Compiler

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel compilers are recommended for building your applications on either Pleiades or
Columbia.

On Columbia, a system default version has been loaded automatically. On Pleiades, there
is no system default--you must load a specific module. Use the "module avail" command on
Pleiades to see what versions are available and load an Intel compiler module before
compiling. For example:

% module load comp-intel/11.1.072

Notice that when a compiler module is loaded, some environment variables, such as
FPATH, INCLUDE, LD_LIBRARY_PATH, etc., are set or modified to add the paths to
certain commands, include files, or libraries, to your environment. This helps to simplify the
way you do your work.

To check what environmant variables will be modified for a module, do, for example:

% module show comp-intel/11.1.072

On Columbia and Pleiades, there are Intel compilers for both Fortran and C/C++:

Intel Fortran Compiler: ifort (version 8 and above)

The ifort command invokes the Intel(R) Fortran Compiler to preprocess, compile,
assemble, and link Fortran programs.

% ifort [options] file1 [file2 ...]

Read man ifort for all available compiler options.

To see the compiler options by categories, do:

% ifort -help

fileN is a Fortran source (.f .for .ftn .f90 .fpp .F .FOR .F90 .i .i90), assembly (.s .S),
object (.o), static library (.a), or other linkable file.

•

Compilers 47

http://www.nas.nasa.gov/kb/Modules_115.html

Source Files Suffix Interpretation:

.f, .for, or .ftn : fixed-form source files♦

.f90 : free-form F95/F90 source files♦

.fpp, .F, .FOR, .FTN, or .FPP: fixed-form source files which must be
preprocessed by the fpp preprocessor before being compiled

♦

.F90 : free-form Fortran source files which must be pre-pro- cessed by the fpp
preprocessor before being compiled

♦

Intel C/C++ compiler: icc and icpc (version 8 and above)

The Intel(R) C++ Compiler is designed to process C and C++ programs on
Intel-architecture-based systems. You can preprocess, compile, assemble, and link
these programs.

% icc [options] file1 [file2 ...]
% icpc [options] file1 [file2 ...]

Read man icc for all available compiler options.

To see the compiler options by categories, do:

% icc -help

The icpc command uses the same compiler options as the icc
command. Invoking the compiler using icpc compiles .c, and .i
files as C++. Invoking the compiler using icc compiles .c and
.i files as C. Using icpc always links in C++ libraries. Using
icc only links in C++ libraries if C++ source is provided on
the command line.

fileN represents a C/C++ source (.C .c .cc .cp .cpp .cxx .c++ .i), assembly (.s), object
(.o), static library (.a), or other linkable file.

•

Intel Compiler 48

GNU Compiler Collection

DRAFT

This article is being reviewed for completeness and technical accuracy.

GCC stands for "GNU Compiler Collection". GCC is an integrated distribution of compilers
for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, and Ada.

The GNU C and C++ compiler (gcc and g++) and Fortran compiler (gfortran) through the
Linux OS distribution are available on Pleiades and Columbia. The current version installed
(under /usr/bin) can be found with the following command:

% gcc -v
... gcc version 4.1.2 20070115 (SUSE Linux)

Newer versions of GNU compilers can be requested and installed as modules. Currently,
there is a gcc/4.4.4 module, which includes gcc, g++, and gfortran, available on Pleiades.

Read man gcc and man gfortran for more information.

GNU Compiler Collection 49

http://www.nas.nasa.gov/kb/Modules_115.html

MPI Libraries

SGI MPT

DRAFT

This article is being reviewed for completeness and technical accuracy.

SGI's Message Passing Interface (MPI) is a component of the Message Passing Toolkit
(MPT), which is a software package that supports parallel programming across a network of
computer systems through a technique known as message passing. It requires the
presence of an Array Services daemon (arrayd) on each host to run MPI processes.

SGI's MPT 1.x versions support the MPI 1.2 standard and certain features of MPI-2. The
2.x versions will be fully MPI-2 compliant.

On Columbia, the current system default version is mpt.1.16. A 2.x version will be available
when the operating system is upgraded to SGI ProPack 7SP1.

On Pleiades, there is no default version. You can enable the recommended version,
mpt.2.04.10789, by:

%module load mpi-sgi/mpt.2.04.10789
Note that certain environment variables are set or modified when an MPT module is loaded.
To see what variables are set when a module is loaded (for example,
mpi-sgi/mpt.2.04.10789), do:

%module show mpi-sgi/mpt.2.04.10789

To build an MPI application using SGI's MPT, use a command such as one of the following:

%ifort -o executable_name prog.f -lmpi
%icc -o executable_name prog.c -lmpi
%icpc -o executable_name prog.cxx -lmpi++ -lmpi
%gfortran -I/nasa/sgi/mpt/1.26/include -o executable_name prog.f -lmpi
%gcc -o executable_name prog.c -lmpi
%g++ -o executable_name prog.cxx -lmpi++ -lmpi

MPI Libraries 50

MVAPICH

DRAFT

This article is being reviewed for completeness and technical accuracy.

MVAPICH is open source software developed largely by the Network-Based Computing
Laboratory (NBCL) at Ohio State University. MVAPICH develops the Message Passing
Interface (MPI) style of process-to-process communications for computing systems
employing InfiniBand and other Remote Direct Memory Access (RDMA) interconnects.

MVAPICH software is typically used across the network of a cluster computer system for
improved performance and scalability of applications.

MVAPICH is an MPI-1 implementation while MVAPICH2 is an MPI-2 implementation
(conforming to MPI 2.2 standard) which includes all MPI-1 features.

MVAPICH1/MVAPICH2 are installed on Pleiades, but not Columbia. You must load in an
MVAPICH1 or MVAPICH2 module before using it. For example:

%module load mpi-mvapich2/1.4.1/intel

A variety of MPI compilers, such as mpicc, mpicxx, mpiCC, mpif77, or mpif90, are provided
in each MVAPICH/MVAPICH2 distribution. The correct compiler should be selected
depending on the programming language of your MPI application.

To build an MPI application using MVAPICH1/MVAPICH2:

%mpif90 -o executable_name prog.f
%mpicc -o executable_name prog.c

MVAPICH 51

http://www.nas.nasa.gov/kb/Modules_115.html

Math & Scientific Libraries

MKL

DRAFT

This article is being reviewed for completeness and technical accuracy.

The Intel Math Kernel Library (MKL) is composed of highly optimized mathematical
functions for engineering and scientific applications requiring high performance on Intel
platforms. The functional areas of the library include linear algebra consisting of LAPACK
and BLAS, fast Fourier transform (FFT), and vector transcendental functions.

MKL release 10.x is part of the Intel compiler 11.0 and 11.1 releases. Once you load in a
11.x compiler module, the path to the MKL library is automatically included in your default
path. If you choose to use Intel compiler 10.x or earlier versions, you have to load an MKL
module separately.

A Layered Model for MKL

Starting with MKL release 10.0, Intel employs a layered model for the MKL library. The
layers are:

Interface layer

LP64 interface (uses 32-bit integer type) or ILP64 interface (uses 64-bit
integer type)

♦

SP2DP interface

which supports Cray-style naming in applications targeted for the Intel 64 or
IA-64 architecture and using the ILP64 interface. SP2DP interface provides a
mapping between single-precision names (for both real and complex types) in
the application and double-precision names in Intel MKL BLAS and LAPACK.

♦

•

Threading layer

sequential

The sequential (non-threaded) mode requires no Compatibility OpenMP* or
Legacy OpenMP* run-time library, and does not respond to the environment
variable OMP_NUM_THREADS or its Intel MKL equivalents. In this mode,
Intel MKL runs unthreaded code. However, it is thread-safe, which means that
you can use it in a parallel region from your own OpenMP code. You should

♦

•

Math & Scientific Libraries 52

http://www.nas.nasa.gov/kb/Modules_115.html

use the library in the sequential mode only if you have a particular reason not
to use Intel MKL threading. The sequential mode may be helpful when using
Intel MKL with programs threaded with some non-Intel compilers or in other
situations where you may, for various reasons, need a non-threaded version
of the library (for instance, in some MPI cases).

Note that the *sequential.* library depends on the POSIX threads library
(pthread), which is used to make the Intel MKL software thread-safe and
should be listed on the link line.
threaded

The *threaded* library in MKL version 10.x supports the implementation of
OpenMP that many compilers (Intel, PGI, GNU) provide.

♦

Computational layer

For any given processor architecture (IA-32, IA-64, or Intel(R) 64) and OS, this layer
has only one computational library to link with, regardless of the Interface and
Threading layer.

•

Compiler Support Run-time libraries

libiomp

Intel(R) Compatibility OpenMP run-time library

♦

libguide

Intel(R) Legacy OpenMP run-time library

♦

•

For example, to do a dynamic linking of myprog.f and parallel Intel MKL supporting LP64
interface, use:

ifort myprog.f -Wl,--start-group -lmkl_intel_lp64 \
-lmkl_intel_thread -lmkl_core -Wl,--end-group -openmp

If you are unsure of what MKL libraries to link with, use the suggestion provided in this Intel
web site by providing the proper OS (e.g. Linux), processor architecture (e.g. Intel(R) 64),
compiler (e.g. Intel or Intel Compatible), dynamic or static linking, integer length, sequential
or multi-threaded, OpenMP library, cluster library (e.g. BLACS, ScaLAPACK), MPI library
(Intel MPI, MPICH2, SGIMPT, etc.).

The -mkl Switch of Intel Compiler Version 11.1

Starting from Intel compiler version 11.1, a -mkl switch is provided to link to certain parts of
the MKL library.

-mkl[=]

MKL 53

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

 link to the Intel(R) Math Kernel Library (Intel(R) MKL) and
 bring in the associated headers
 parallel - link using the threaded Intel(R) MKL libraries.
 This is the default when -mkl is specified
 sequential - link using the non-threaded Intel(R) MKL libraries
 cluster - link using the Intel(R) MKL Cluster libraries plus
 the sequential Intel(R) MKL libraries

The libraries that are linked in for

 * -mkl=parallel

 --start-group \
 -lmkl_solver_lp64 \
 -lmkl_intel_lp64 \
 -lmkl_intel_thread \
 -lmkl_core \
 -liomp5 \
 --end-group \

 * -mkl=sequential

 --start-group \
 -lmkl_solver_lp64_sequential \
 -lmkl_intel_lp64 \
 -lmkl_sequential \
 -lmkl_core \
 --end-group \

 * -mkl=cluster

 --start-group \
 -lmkl_solver_lp64 \
 -lmkl_intel_lp64 \
 -lmkl_cdft_core \
 -lmkl_scalapack_lp64 \
 -lmkl_blacs_lp64 \
 -lmkl_sequential \
 -lmkl_core \
 -liomp5 \
 --end-group \

Where to find more information about MKL

Man pages and two PDF files from Intel are available for each version of MKL.

Man pages of Intel MKL

A collection of man pages of Intel MKL functions are available under the man3
subdirectory (e.g., /nasa/intel/Compiler/11.1/072/man/en_US/man3) of the MKL
installation. You will have to load an MKL module or an Intel compiler 11.x module
before you can see the man pages. For example,

•

MKL 54

% module load comp-intel/11.1.072
% man gemm

provides information about [s,d,c,z,sc,dz]gemm routines.

Unfortunately, there does not appear to be a 'man mkl' page.

Intel MKL Reference Manual (mklman.pdf)

Contains detailed descriptions of the functions and interfaces for all library domains:

BLAS♦
LAPACK♦
ScaLAPACK♦
Sparse Solver♦
Interval Linear Solvers♦
Vector Math Library (VML)♦
Vector Statistical Library (VSL)♦
Conventional DFTs and Cluster DFTs♦
Partial Differential Equations support♦
Optimization Solvers♦

•

Intel MKL User's Guide (userguide.pdf)

Provides Intel MKL usage information in greater detail:

getting started information♦
application compiling and linking depending on a particular platform and
function domain

♦

building custom DLLs♦
configuring the development environment♦
coding mixed-language calls♦
threading♦
memory management♦
ways to obtain best performance♦

The two pdf files can be found in the 'doc' or 'Documentation' directory of the MKL
installation. For example, on Pleiades,

MKL version 10.0.011

/nasa/intel/mkl/10.0.011/doc

♦

The version included in the Intel compiler module 11.1.072

/nasa/intel/Compiler/11.1/072/Documentation/en_US/mkl

♦

•

MKL 55

SCSL

DRAFT

This article is being reviewed for completeness and technical accuracy.

SCSL is a comprehensive collection of scientific and mathematical functions that have been
optimized for use on the Altix systems such as Columbia . The libraries include optimization
of basic linear algebra subprograms (BLAS), a linear algebra package, signal processing
functions such as fast Fourier transforms (FFTs), and liner filtering operations and other
basic solver functions. More information can be found through 'man scsl'.

Starting with ProPack 5, SCSL is no longer supported by SGI.
Although SCSL is still available on Columbia (but not on Pleiades),
users are recommended to use Intel MKL instead.
SCSL version(s) available on Columbia systems:

scsl.1.5.0.0 (does not work properly with intel-comp.9.1.039)•
scsl.1.5.1.0•
scsl.1.5.1.1 (contains Scalapack in libsdsm.so)•
scsl.1.6.1.0•

To use SCSL, link one of the following libraries:

-lscs
-lscs_mp (for multi-threaded programs)
-lscs_i8
-lscs_i8_mp

SCSL 56

MKL FFTW Interface

DRAFT

This article is being reviewed for completeness and technical accuracy.

Some users have installed the FFTW library in their own directory (for example,
/u/user/bin/fftw) and would link to the FFTW library as follows:

ifort -O3
 -I/u/user/bin/fftw/include \
 -o fftw_xmpl.exe fftw_xmpl.f \
 -L/u/user/bin/fftw/lib -lfftw3

An MKL FFTW interface has been created for Intel compiler version 11.0.083 and later
versions. Users no longer have to keep their own copy of FFTW. Follow these steps to use
the MKL FFTW interface:

Load a compiler module 11.0.083 or a later version such as comp-intel/11.1.072

module load comp-intel/11.1.072

•

Compile and link

ifort -O3 \
 -I/nasa/intel/Compiler/11.1/072/mkl/include/fftw \
 -o fftw_xmpl.exe fftw_xmpl.f \
 -lfftw3xf_intel -lmkl_intel_lp64 -lmkl_intel_thread \
 -lmkl_core -lguide

•

MKL FFTW Interface 57

http://www.nas.nasa.gov/kb/Modules_115.html

Program Development Tools

Recommended Intel Compiler Debugging Options

DRAFT

This article is being reviewed for completeness and technical accuracy.

Commonly used options for debugging:

-O0
Disables optimizations. Default is -O2

-g
Produces symbolic debug information in object file (implies -O0 when another
optimization option is not explicitly set)

-traceback
Tells the compiler to generate extra information in the object file to provide
source file traceback information when a severe error occurs at run-time.

Specifying -traceback will increase the size of the
executable program, but has no impact on run-time
execution speeds.

-check all
Checks for all run-time failures. Fortran only.

-check bounds
Alternate syntax: -CB. Generates code to perform run-time checks on array
subscript and character substring expressions. Fortran only.

Once the program is debugged, omit this option to reduce
executable program size and slightly improve run-time
performance.

-check uninit
Checks for uninitialized scalar varaibles without the SAVE attribute. Fortran
only.

-check-uninit
Enables run-time checking for uninitialized variables. If a variable is read
before it is written, a run-time error routine will be called. Run-time checking of
undefined variables is only implemented on local, scalar variables. It is not

•

Program Development Tools 58

implemented on dynamically allocated variables, extern variables or static
variables. It is not implemented on structs, classes, unions or arrays. C/C++
only.

-ftrapuv
Traps uninitialized variables by setting any uninitialized local variables that are
allocated on the stack to a value that is typically interpreted as a very large
integer or an invalid address. References to these variables are then likely to
cause run-time errors that can help you detect coding errors. This option sets
-g.

-debug all
Enables debug information and control output of enhanced debug information.
To use this option, you must also specify the -g option.

-gen-interfaces -warn interfaces
Tells the compiler to generate an interface block for each routine in a source
file; the interface block is then checked with -warn interfaces

Options for handling floating-point exceptions:

-fpe{0|1|3}
Allows some control over floating-point exception (divide by zero, overflow,
invalid operation, underflow, denormalized number, positive infinity, negative
infinity or a NaN) handling for the main program at run-time. Fortran only.

-fpe0: underflow gives 0.0; abort on other IEEE exceptions⋅
-fpe3: produce NaN, signed infinities, and denormal results⋅

Default is -fpe3 with which all floating-point exceptions are disabled and
floating-point underflow is gradual, unless you explicitly specify a compiler
option that enables flush-to-zero. Use of -fpe3 on IA-64 systems such as
Columbia will slow run-time performance.

-fpe-all={0|1|3}
Allows some control over floating-point exception handling for each routine in
a program at run-time. Also sets -assume ieee_fpe_flags. Default is
-fpe-all=3. Fortran only.

-assume ieee_fpe_flags
Tells the compiler to save floating-point exception and status flags on routine
entry and restore them on routine exit. This option can slow runtime
performance. Fortran only.

-ftz
Flushes denormal results to zero when the application is in the gradual

•

Recommended Intel Compiler Debugging Options 59

underflow mode. This option has effect only when compiling the main
program. It may improve performance if the denormal values are not critical
to your application's behavior. For IA-64 systems (such as Columbia), -O3
sets -ftz. For Intel 64 systems (such as Pleiades), every optimization option O
level, except -O0, sets -ftz.

Options for handling floating-point precision:

-mp
Enables improved floating-point consistency during calculations. This option
limits floating-point optimizations and maintains declared precision. -mp1
restricts floating-point precision to be closer to declared precision. It has some
impact on speed, but less than the impact of -mp.

-fp-model precise
Tells the compiler to strictly adhere to value-safe optimizations when
implementing floating-point calculations. It disables optimizations that can
change the result of floating-point calculations. These semantics ensure the
accuracy of floating-point computations, but they may slow performance.

-fp-model strict
Tells the compiler to strictly adhere to value-safe optimizations when
implementing floating-point calculations and enables floating-point exception
semantics. This is the strictest floating-point model.

-fp-speculation=off
Disables speculation of floating-point operations. Default is
-fp-speculation=fast

-pc{64|80}
For Intel EM64 only. Some floating-point algorithms are sensitive to the
accuracy of the significand, or fractional part of the floating-point value. For
example, iterative operations like division and finding the square root can run
faster if you lower the precision with the -pc option. -pc64 sets internal FPU
precision to 53-bit significand. -pc80 is the default and it sets internal FPU
precision to 64-bit significand.

•

Recommended Intel Compiler Debugging Options 60

Totalview

DRAFT

This article is being reviewed for completeness and technical accuracy.

TotalView is a GUI-based debugging tool that gives you control over processes and thread
execution and visibility into program state and variables for C, C++ and Fortran
applications. It also provides memory debugging to detect errors such as memory leaks,
deadlocks and race conditions, etc.

Totalview allows you to debug serial, OpenMP, or MPI codes.

Totalview is available on both Pleiades and Columbia. See Totalview Debugging on
Pleiades for some basic instructions on how to start using Totalview on Pleiades.

See Totalview Debugging on Columbia for some basic instructions on how to start using
Totalview on Columbia.

Totalview 61

Totalview Debugging on Pleiades

DRAFT

This article is being reviewed for completeness and technical accuracy.

TotalView is an advanced debugger for complex and parallel codes. Its versions have been
installed as modules. To find out what versions of totalview are available, use the 'module
avail' command.

There are additional steps needed in order to start the TotalView GUI. You'll need to rely on
the ForwardX11 feature of your ssh. First, you'll have to make sure that your sysadmin had
turned on ForwardX11 when SSH was installed on your system or use the -X or -Y (if
available) options of ssh to enable X11 forwarding for your SSH session.

For debugging on a back-end node, do:

Compile your code with -g•

Start a PBS session. For example:

% qsub -I -V -lselect=2:ncpus=8,walltime=1:00:00

•

Test the X11 forwarding with xlock

% xclock

•

Load the totalview module

% module load apps/etnus/totalview.8.6.2-1

•

Set the environment variable TOTALVIEW

% setenv TOTALVIEW `which totalview` (for csh users)
or
% export TOTALVIEW=`which totalview` (for bash users)

•

Start TotalView debugging

For serial applications:

Simply start totalview with your application as an argument

% totalview ./a.out

◊

♦

•

Totalview Debugging on Pleiades 62

http://www.nas.nasa.gov/kb/Modules_115.html

If your application requires arguments:

% totalview ./a.out -a app_arg_1 app_arg_2

For MPI applications:

Make sure you load the appropriate modules, including the compiler,
and mpi module. For example:

For applications built with SGI's MPT, make sure that you have loaded
the latest MPT module:

% module load comp-intel/11.1.072
% module load mpi-sgi/mpt.1.26

For applications built with MVAPICH:

% module load comp-intel/11.1.072
% module load mpi-mvapich2/1.4.1/intel

1.

Launch totalview by typing "totalview" all by itself. Once the totalview
windows pop up, you will see four tabs in the "New Program" window:
Program, Arguments, Standard I/O and Parallel.

2.

Fill in the executable name in the "Program" box or use the Browse
button to find the executable

3.

Give any arguments to your executable by clicking on the "Arguments"
tab and filling in what you need. If you need to redirect input from a file,
do so by clicking the "Standard I/O" tab and filling in what you need.

4.

In the "Parallel" tab, select the parallel system option MVAPICH2 or
mpt_1.26 depending on which version of MPI you have compiled with.

5.

Enter in the number of processes in the 'tasks' box; leave the 'nodes'
field 0. For example, if you run your application with 2 nodes x 4 MPI
processes/node = 8 processes in total, fill in 8 in the 'tasks' box and 0
in the 'node' box.

6.

Then press "Go" to start. Note that it may initially dump you into the
mpiexec assembler source which is not your own code.

7.

Respond to the popup dialog box which says "Process xxx is a parallel
job. Do you want to stop the job now?" Choose "No" if you just want to
run your application. Choose "Yes" if you want to set breakpoint in your
source code or do other tasks before running.

8.

♦

Totalview Debugging on Pleiades 63

More information about TotalView can be found at the Totalview online documentation
website.

Totalview Debugging on Pleiades 64

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

Totalview Debugging on Columbia

DRAFT

This article is being reviewed for completeness and technical accuracy.

TotalView is an advanced debugger for complex and parallel codes. It has been installed as
modules. To find out what versions of totalview are available, use the command 'module
avail totalview'.

You'll need to rely on the ForwardX11 feature of your ssh. First, you'll have to make sure
that your sysadmin had turned on ForwardX11 when SSH was installed on your local
system or use the -X or -Y (if available) options of ssh to enable X11 forwarding for your
SSH session.

For debugging on the front-end cfe2, do:

Login to the front-end cfe2•

Compile your code with -g•

Make sure that X11 forwarding works and test it with xclock

cfe2%echo $DISPLAY
cfe2:xx.0
cfe2%xclock

•

Load the totalview module

cfe2% module load totalview.8.9.0-1

•

Start totalview. For serial jobs:

cfe2% totalview a.out

For MPI jobs built with SGI's MPT library:

cfe2% totalview mpirun.real -a -np xxx a.out

•

For debugging on a back-end node, do:

Compile your code with -g•

Start a PBS session and pass in the environment variable DISPLAY. Assuming
PBS assign your job to run on Columbia21

•

Totalview Debugging on Columbia 65

cfe2% qsub -I -v DISPLAY -lncpus=8,walltime=1:00:00

Test the X11 forwarding with xlock

PBS(8cpus)columbia21% xclock

•

Load the totalview module

PBS(8cpus)columbia21% module load totalview.8.9.0-1

•

Start totalview. For serial jobs:

PBS(8cpus)columbia21% totalview a.out

For MPI jobs built with SGI's MPT library:

PBS(8cpus)columbia21% totalview mpirun.real -a -np xxx a.out

•

More information about TotalView can be found at the Totalview online documentation
website.

Totalview Debugging on Columbia 66

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

IDB

DRAFT

This article is being reviewed for completeness and technical accuracy.

The Intel Debugger is a symbolic source code debugger that debugs programs compiled by
the Intel Fortran and C/C++ Compiler, and the GNU compilers (gcc, g++).

IDB is included in the Intel compiler distribution. For IA-64 systems such as Columbia, both
the Intel 10.x and 11.x compiler distributions provide only an IDB command-line interface.
To use IDB on Columbia, load an Intel 10.x or 11.x compiler module. For example:

%module load intel-comp.11.1.072
%idb
(idb)

For Intel 64 systems such as Pleiades, a command-line interface is provided in the 10.x
distribution and is invoked with the command idb just like on Columbia. For the Intel 11.x
compilers, both a graphical user interface (GUI), which requires a Java Runtime, and a
command-line interface are provided. The command idb invokes the GUI interface by
default. To use the command-line interface under 11.x compilers, use the command idbc.
For example:

%module load comp-intel/11.1.072 jvm/jre1.6.0_20
%idb
.... This will bring up an IDB GUI

%module load comp-intel/11.1.072
%idbc
(idb)

Be sure to compile your code with the -g option for symbolic debugging.

Depending on the Intel compiler distributions, the Intel Debugger can operate in either the
gdb mode, dbx mode or idb mode. The available commands under these modes are
different.

For information on IDB in the 10.x distribution, read man idb.

For information on IDB in the 11.x distribution, read documentations under pfe or
cfe2:/nasa/intel/Compiler/11.1/072/Documentation/en_US/idb

IDB 67

http://www.nas.nasa.gov/kb/Modules_115.html

GDB

DRAFT

This article is being reviewed for completeness and technical accuracy.

The GNU Debugger, GDB, is available on both Pleiades and Columbia under /usr/bin. It
can be used to debug programs written in C, C++, Fortran and Modula-a.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

Start your program, specifying anything that might affect its behavior.•
Make your program stop on specified conditions.•
Examine what has happened, when your program has stopped.•
Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

•

Be sure to compile your code with -g for symbolic debugging.

GDB is typically used in the following ways:

Start the debugger by itself
%gdb
(gdb)

•

Start the debugger and specify the executable
%gdb your_executable
(gdb)

•

Start the debugger, and specify the executable and core file
%gdb your_executable core-file
(gdb)

•

Attach gdb to a running process
%gdb your_executable pid
(gdb)

•

At the prompt (gdb), type in commands such as break for setting a breakpoint, run for
starting to run your executable, step for stepping into next line, etc. Read man gdb to learn
more on using gdb.

GDB 68

Using pdsh_gdb for Debugging Pleiades PBS Jobs

DRAFT

This article is being reviewed for completeness and technical accuracy.

A script called pdsh_gdb, created by NAS staff Steve Heistand, is available on Pleiades
under /u/scicon/tools/bin for debugging PBS jobs while the job is running.

Launching this script from a Pleiades front-end node allows one to connect to each
compute node of a PBS job and create a stack trace of each process. The aggregated
stack trace from each process will be written to a user specified directory (by default, it is
written to ~/tmp).

Here is an example of how to use this script:

pfe1% mkdir tmp
pfe1% /u/scicon/tools/bin/pdsh_gdb -j jobid -d tmp -s -u nas_username

More usage information can be found by launching pdsh_gdb without any option:

pfe1% /u/scicon/tools/bin/pdsh_gdb

Using pdsh_gdb for Debugging Pleiades PBS Jobs 69

Porting to Pleiades

Recommended compiler options

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel compiler versions 10.0, 10.1, 11.0, 11.1, and 12.0 are available on Pleiades as
modules. Use the 'module avail' command to find available versions. Since NAS does not
set a default version for users on Pleiades, be sure to use the 'module load ...' command to
load the version you want to use.

In addition to the few flags mentioned in the article Recommended Intel Compiler
Debugging Options, here are a few more to keep in mind:

Turn on optimization: -O3

If you do not specify an optimization level (-On, n=0,1,2,3), the default is -O2. If you want
more aggressive optimizations, you can use -O3. Note that using -O3 may not improve
performance for some programs.

Generate optimized code for a processor type: -xS, -xSSE4.1 or -xSSE4.2

Intel version 10.x, 11.x and 12.x compilers provide flags for generating optimized codes
specialized for various instruction sets used in specific processors or microarchitectures.

Processor Type Intel V10.x Intel V11.x and above
Harpertown -xS -xSSE4.1
Nehalem-EP

Westmere-EP
N/A -xSSE4.2

Since the instruction set is upward compatible, an application which is compiled with
-xSSE4.1 can run on either Harpertown or Nehalem-EP or Westmere-EP processors. An
application which is compiled with -xSSE4.2 can run ONLY on Nehalem-EP and
Westmere-EP processors.

If your goal is to get the best performance out of the Nehalem-EP/Westmere-EP
processors, it is recommended that you do the following:

Use either Intel 11.x or 12.x compilers as they are designed for
Nehalem-EP/Westmere-EP micro-architecture optimizations.

•

Porting to Pleiades 70

http://www.nas.nasa.gov/kb/Modules_115.html

Use the Nehalem-EP/Westmere-EP processor specific optimization flag -xSSE4.2

Warning: Running an executable built with the -xSSE4.2 flag on
the Harpertown processors will result in the following error:

Fatal Error: This program was not built to run on the processor in your system. The
allowed processors are: Intel(R) processors with SSE4.2 and POPCNT instructions
support.

•

If your goal is to have a portable executable that can run on either Harpertown or
Nehalem-EP or Westmere-EP, you can choose one of the following approaches:

use none of the above flags•
use -xSSE4.1 (with version 11.x and 12.x compilers)•
use -O3 -ipo -axSSE4.2,xSSE4.1(with version 11.x and 12.x compilers).

This allows a single executable that will run on any of the three Pleiades processor
types with suitable optimization to be determined at run time.

•

Turn inlining on: -ip or -ipo

Use of -ip enables additional interprocedural optimizations for single file compilation. One of
these optimizations enables the compiler to perform inline function expansion for calls to
functions defined within the current source file.

Use of -ipo enables multifile interprocedural (IP) optimizations (between files). When you
specify this option, the compiler performs inline function expansion for calls to functions
defined in separate files.

Use a specific memory model: -mcmodel=medium and -shared-intel

Should you get a link time error relating to R_X86_64_PC32, add in the compiler option of
-mcmodel=medium and the link option of -shared-intel. This happens if a common block is
> 2gb in size.

Turn off all warning messages: -w -vec-report0 -opt-report0

Use of -w disables all warnings; -vec-report0 disables printing of vectorizer diagnostic
information; and -opt-report0 disables printing of optimization reports.

Parallelize your code: -openmp or -parallel

-openmp handles OMP directives and -parallel looks for loops to parallelize.

For more compiler/linker options, read man ifort, man icc, or

Recommended compiler options 71

%ifort -help
%icc -help

Recommended compiler options 72

With SGI's MPT

DRAFT

This article is being reviewed for completeness and technical accuracy.

Among the many MPI libraries installed on Pleiades, it is recommended that you start with
SGI's MPT library.

The available SGI MPT modules are:

mpi/mpt.1.25
mpi-sgi/mpt.1.26
mpi-sgi/mpt.2.04.10789

There is no default MPT version set, but you are recommended to start with the MPT
2.04.10789 version by loading the mpi-sgi/mpt.2.04.10789 module. You should load the
same module when you build your application on the front-end node and also inside your
PBS script for running on the back-end nodes.

Note: Pleiades uses an InfiniBand (IB) network for interprocess RDMA (remote direct
memory access) communications and there are two InfiniBand fabrics, designated
as ib0 and ib1. In order to maximize performance, SGI advises that the ib0 fabric be used
for all MPI traffic. The ib1 fabric is reserved for storage related traffic. The default
configuration for MPI is to use only the ib0 fabric.

Environment Variables

When you load an MPT module, several paths (such as CPATH, C_INCLUDE_PATH,
LD_LIBRARY_PATH, etc) and MPT or ARRAYD related variables are set or modified. For
example, with the mpi-sgi/mpt.2.04.10789 module, the following MPT and ARRAYD related
variables are reset to some non-default values:

setenv MPI_BUFS_PER_HOST 256
setenv MPI_IB_TIMEOUT 20
setenv MPI_IB_RAILS 2
setenv MPI_DSM_DISTRIBUTE 0 (for Harpertown processors)
setenv MPI_DSM_DISTRIBUTE 1 (for Nehalem-EP and Westmere-EP processors)
setenv ARRAYD_CONNECTTO 15
setenv ARRAYD_TIMEOUT 180

The meanings of these variables and their default values are:

MPI_BUFS_PER_HOST

Determines the number of shared message buffers (16 KB each) that MPI is to
allocate for each host (i.e., Pleiades node used in the run). These buffers are used to

•

With SGI's MPT 73

http://www.nas.nasa.gov/kb/Modules_115.html

send and receive long inter-host messages.

Default: 96 pages (1 page = 16KB)
MPI_IB_TIMEOUT

When an IB card sends a packet it waits some amount of time for an ACK packet to
be returned by the receiving IB card. If it does not receive one it sends the packet
again. This variable controls that wait period. The time spent is equal to 4 * 2 ^
MPI_IB_TIMEOUT microseconds.

Default: 18

•

MPI_IB_RAILS

If the MPI library uses the IB driver as the inter-host interconnect it will by default use
a single IB fabric. If this is set to 2, the library will try to make use of multiple
available separate IB fabrics (e.g. ib0 and ib1) and split its traffic across them. If the
fabrics do not have unique subnet IDs then the rail-config utility is required to have
been run by the system administrator to enable the library to correctly use the
separate fabrics.

Default: 1

•

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the node with which that CPU is
associated. This feature can also be overridden by using dplace or omplace. This
feature is most useful if running on a dedicated system or running within a cpuset.

Default: Enabled for MPT.1.26; Not Enabled for MPT.1.25

•

ARRAYD_CONNECTTO

Tuning this variable is useful when you want to run jobs through arrayd across a
large cluster, and there is network congestion. Setting this variable to a higher value
might slow down some array commands when a host is unavailable but it will help to
prevent MPI start up problems due to connection time-out.

Default: 5 seconds

•

ARRAYD_TIMEOUT

Tuning this variable is useful when you want to run jobs through arrayd across a
large cluster, and there is network congestion. Setting this variable to a higher value
might slow down some array commands when a host is unavailable but it will help to
prevent MPI start up problems due to connection time-out.

•

With SGI's MPT 74

Default: 45 seconds

For more MPT related variables, read man mpi after loading an MPT module. Some of
them may be useful for some applications or for debugging purposes on Pleides. Here are
a few of them for you to consider:

MPI_BUFS_PER_PROC

Determines the number of private message buffers (16 KB each) that MPI is to
allocate for each process (i.e. MPI rank). These buffers are used to send long
messages and intrahost messages.

Default: 32 pages (1 page = 16KB)

•

MPI_IB_FAILOVER

When the MPI library uses IB and a connection error is detected, the library will
handle the error and restart the connection a number of times equal to the value of
this variable. Once there are no more failover attempts left and a connection error
occurs, the application will be aborted.

Default: 4

•

MPI_COREDUMP

Controls which ranks of an MPI job can dump core on receipt of a core-dumping
signal. Valid values are NONE, FIRST, ALL, or INHIBIT. NONE means that no rank
should dump core. FIRST means that the first rank on each host to receive a
core-dumping signal should dump core. ALL means that all ranks should dump core
if they receive a core-dumping signal. INHIBIT disables MPI signal-handler
registration for core- dumping signals.

Default: FIRST

•

MPI_STATS (toggle)

Enables printing of MPI internal statistics. Each MPI process prints statistics about
the amount of data sent with MPI calls during the MPI_Finalize process.

Default: Not enabled

•

MPI_DISPLAY_SETTING

If set, MPT will display the default and current settings of the environmental variables
controlling it.

•

With SGI's MPT 75

Default: Not enabled

MPI_VERBOSE

Setting this variable causes MPT to display information such as what interconnect
devices are being used and environmental variables have been set by the user to
non-default values. Setting this variable is equivalent to passing mpirun the -v option.

Default: Not enabled

•

Building Applications

Building MPI applications with SGI's MPT library simply requires linking with -lmpi and/or
-lmpi++. See the article SGI MPT for some examples.

Running Applications

MPI executables built with SGI's MPT are not allowed to run on the
Pleiades front-end nodes.

You can run your MPI job on the back-end nodes in an interactive PBS session or through
a PBS batch job. After loading an MPT module, use mpiexec, not mpirun, to start your MPI
processes. For example:

#PBS -lselect=2:ncpus=8:mpiprocs=4:model=har
....
module load mpi-sgi/mpt.2.04.10789
mpiexec -np N ./your_executable

The -np flag (with N MPI processes) can be omitted if the value of N is the same as the
product of the value specified for select and that specified for mpiprocs.

Performance Issues

On Nehalem-EP and Westmere-EP nodes, if your MPI job uses all the processors in each
node (i.e, 8 MPI processes/node for Nehalem-EP and 12 MPI processes/node for
Westmere-EP), pinning MPI processes greatly helps the performance of the code. SGI's
mpi-sgi/mpt.2.04.10789 will pin processes by default by setting the environment variable
MPI_DSM_DISTRIBUTE to 1 (or true) when jobs are run on the Nehalem or Westmere
nodes. On Harpertown nodes, setting MPI_DSM_DISTRIBUTE to 1 is not recommended
due to a processor labeling issue.

If your MPI job do not use all the processors in each node, it is recommended that you
disable MPI_DSM_DISTRIBUTE by

setenv MPI_DSM_DISTRIBUTE 0

With SGI's MPT 76

and let the Linux kernel decide where to place your MPI processes. If you want to pin
processes explicitly, you can use dplace. Beware that with SGI's MPT, only 1 shepherd
process is created for the entire pool of MPI processes and the proper way of pinning using
dplace is to skip the shepherd process. In addition, knowledge of the processor labeling in
each processor type is essential when you use dplace. Below are the recommended ways
of pinning an 8 MPI process job with every 4 processes on 4 processor cores of a node:

Harpertown

mpiexec -np 8 dplace -s1 -c2,3,6,7 ./your_executable

•

Nehalem-EP

mpiexec -np 8 dplace -s1 -c2,3,4,5 ./your_executable

•

Westmere-EP

mpiexec -np 8 dplace -s1 -c4,5,6,7 ./your_executable

•

Further information about pinning can be found here.

With SGI's MPT 77

With MVAPICH

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Pleiades, there are multiple modules of MVAPICH2 built with either gcc or Intel
compilers.

mpi-mvapich2/1.2p1/gcc
mpi-mvapich2/1.2p1/intel
mpi-mvapich2/1.2p1/intel-PIC
mpi-mvapich2/1.4.1/gcc
mpi-mvapich2/1.4.1/intel

The module mpi-mvapich2/1.2p1/intel-PIC was built with the -fpic compiler flag.

Building Applications

Here is an example of how to build an MPI application with MVAPICH2:

%module load mpi-mvapich2/1.4.1/intel
%module load comp-intel/11.1.072
%mpif90 program.f90

Running Applications

To run your job, submit your job through PBS. Within the PBS script, there are two ways to
run MPI applications built with MVAPICH2.

#PBS ..
...
module load mpi-mvapich2/1.4.1/intel
module load comp-intel/11.1.072

mpiexec -np TOTAL_CPUS your_executable

1.

#PBS ..
...
module load mpi-mvapich2/1.4.1/intel
module load comp-intel/11.1.072

mpirun_rsh -np TOTAL_CPUS -hostfile $PBS_NODEFILE your_executable

2.

Performance Issues

To pin processes, the MVAPICH library uses the environment variable
VIADEV_USE_AFFINITY, which does something similar to SGI's MPI_DSM_DISTRIBUTE.

With MVAPICH 78

http://www.nas.nasa.gov/kb/Modules_115.html

By default, VIADEV_USE_AFFINITY is set to 1.

If you wish to pin processes explicitly, beware that with MVAPICH, 1 shepherd process is
created for each MPI process. You can use the command

/u/scicon/tools/bin/qsh.pl jobid \
 'ps -C executable -L -opsr,pid,ppid,lwp,time,comm'

to see these processes of your running job. To properly pin MPI processes using dplace,
one cannot skip the shepherd processes. In addition, knowledge of the processor labeling
in each processor type is essential when you use dplace. Below are the recommended
ways of pinning an 8 MPI process job with every 4 processes on 4 processors of a node:

Harpertown

mpiexec -np 8 dplace -c2,3,6,7 ./your_executable

•

Nehalem-EP

mpiexec -np 8 dplace -c2,3,4,5 ./your_executable

•

Westmere-EP

mpiexec -np 8 dplace -c4,5,6,7 ./your_executable

•

Further information about pinning can be found here.

For more descriptions including the MVAPICH User Guide and other MVAPICH
publications, see http://mvapich.cse.ohio-state.edu.

With MVAPICH 79

http://mvapich.cse.ohio-state.edu

With Intel-MPI

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel's MPI library is another alternative for building and running your MPI application. The
available Intel MPI modules are:

mpi-intel/3.1.038
mpi-intel/3.1b
mpi-intel/3.2.011

To use Intel MPI, first create a file $HOME/.mpd.conf that has the single line:

MPD_SECRETWORD=sometext

('sometext' should be unique for each user)

and change the permission of the file to read/write by you only.

%chmod 600 $HOME/.mpd.conf

Building Applications

To compile, load an Intel compiler module and an Intel MPI module. Make sure that no
other MPI module is loaded (i.e., MPT, MVAPICH or MVAPICH2)

%module load mpi-intel/3.1.038
%module load comp-intel/11.1.072

Use the mpiifort/mpiicc scripts which invoke the Intel ifort/icc compilers.

%mpiifort -o your_executable program.f

Running Applications

To run it, in your PBS script make sure the intel MPI modules are loaded as above, start the
MPD daemon, use mpiexec, and terminate the daemon at the end. For example,

#PBS ..
..
module load mpi-intel/3.1.038
module load comp/intel/10.1.021_64

Note: The following three lines should really be in one line

With Intel-MPI 80

http://www.nas.nasa.gov/kb/Modules_115.html

mpdboot --file=$PBS_NODEFILE --ncpus=1 --totalnum=`cat $PBS_NODEFILE |
sort -u | wc -l` --ifhn=`head -1 $PBS_NODEFILE`
 --rsh=ssh --mpd=`which mpd` --ordered

CPUS_PER_NODE and TOTAL_CPUS below represent numerical numbers
for the job at hand

mpiexec -ppn CPUS_PER_NODE -np TOTAL_CPUS ./your_executable

terminate the MPD daemon

mpdallexit

With Intel-MPI 81

With OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build an OpenMP application, you need to use the -openmp Intel compiler flag:

%module load comp-intel/11.1.072
%ifort -o your_executable -openmp program.f

Running Applications

The maximum number of OpenMP threads an application can use on a Pleiades node
depends on (i) the number of physical processor cores in the node and (ii) if hyperthreading
is available and enabled. Hyperthreading technology is not available for the Harpertown
processor type. It is available and enabled at NAS for the Nehalem-EP and Westmere-EP
processor types. With hyperthreading, the OS views each physical core as two logical
processors and can assign two threads to it. This is beneficial only when one thread does
not keep the functional units in the core busy all the time and can share the resources in the
core with another thread. Running in this mode may take less than 2 times the walltime
compared to running only 1 thread on the core.

Before running with hyperthreading for your production runs, it is
recommended that you experiment with it to see if it is beneficial
for your application.

Maximum Threads

Processor Type Maximum Threads
without Hyperthreading

Maximum Threads
with Hyperthreading

Harpertown 8 N/A
Nehalem-EP 8 16
Westmere-EP 12 24

Here is sample PBS script for running OpenMP applications on a Pleiades Nehalem-EP
node without hyperthreading:

#PBS -lselect=1:ncpus=8:ompthreads=8:model=neh,walltime=1:00:00

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

./your_executable

With OpenMP 82

Here is sample PBS script with hyperthreading:

#PBS -lselect=1:ncpus=8:ompthreads=16:model=neh,walltime=1:00:00

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

./your_executable

With OpenMP 83

With SGI's MPI and Intel OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build an MPI/OpenMP hybrid executable using SGI's MPT and Intel's OpenMP libraries,
your code needs to be compiled with the -openmp flag and linked with the -mpi flag.

%module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789
%ifort -o your_executable prog.f -openmp -lmpi

Running Applications

Here is a sample PBS script for running MPI/OpenMP application on Pleiades using 3
nodes and on each node, 4 MPI processes with 2 OpenMP threads per MPI process.

#PBS -lselect=3:ncpus=8:mpiprocs=4:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789
setenv OMP_NUM_THREADS 2

cd $PBS_O_WORKDIR

mpiexec ./your_executable

You can specify the number of threads, ompthreads, on the PBS resource request line,
which will cause the PBS prologue to set the OMP_NUM_THREADS environment variable.

#PBS -lselect=3:ncpus=8:mpiprocs=4:ompthreads=2:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789

cd $PBS_O_WORKDIR

mpiexec ./your_executable

Performance Issues

For pure MPI codes built with SGI's MPT library, performance on Nehalem-EP and
Westmere-EP nodes improves by pinning the processes through setting
MPI_DSM_DISTRIBUTE envrionment variables to 1 (or true). However, for MPI/OpenMP
codes, all the OpenMP threads for the same MPI process have the same process ID and
setting this variable to 1 causes all OpenMP threads to be pinned on the same core and the

With SGI's MPI and Intel OpenMP 84

performance suffers.

It is recommended that MPI_DSM_DISTRIBUTE is set to 0 and omplace is to be used for
pinning instead.

If you use Intel version 10.1.015 or later, you should also set KMP_AFFINITY to disabled or
OMPLACE_AFFINITY_COMPAT to ON as Intel's thread affinity interface would interfere
with dplace and omplace.

#PBS -lselect=3:ncpus=8:mpiprocs=4:ompthreads=2:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789

setenv MPI_DSM_DISTRIBUTE 0
setnev KMP_AFFINITY disabled

cd $PBS_O_WORKDIR

mpiexec -np 4 omplace ./your_executable

With SGI's MPI and Intel OpenMP 85

With MVAPICH and Intel OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build an MPI/OpenMP hybrid executable using MVAPICH and Intel's OpenMP libraries,
use mpif90, mpicc, mpicxx with the -openmp flag.

%module load comp-intel/11.1.072 mpi-mvapich2/1.4.1/intel
%mpif90 -o your_executable prog.f90 -openmp

Running Applications

With MVAPICH, a user's environment variables (such as VIADEV_USE_AFFINITY and
OMP_NUM_THREADS) are not passed in to mpiexec, thus they need to be passed in
explicitly, such as with /usr/bin/env.

Here is an example on how to run a MVAPICH/OpenMP hybrid code with a total of 12 MPI
processes and 2 OpenMP threads per MPI process:

#PBS -lselect=3:ncpus=8:mpiprocs=4:model=neh

module load comp-intel/11.1.072 mpi-mvapich2/1.4.1/intel

mpiexec /usr/bin/env VIADEV_USE_AFFINITY=0 OMP_NUM_THREADS=2 ./your_executable

Performance Issues

Setting the environment variable VIADEV_USE_AFFINITY to 0 disables CPU affinity
because MVAPICH does its own pinning. Setting it to 1 actually causes multiple OpenMP
threads to be placed on a single processor.

With MVAPICH and Intel OpenMP 86

Porting to Columbia

Default or Recommended compiler version and options

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel compiler versions 10.0, 10.1, 11.0 and 11.1 are available on Columbia as modules.
Use the 'module avail' command to find available versions.

The current default compiler module on Columbia is intel-comp.10.1.013.

In addition to the few flags mentioned in the article Recommended Intel Compiler
Debugging Options, here are a few more to keep in mind:

Turn on optimization: -O3

If you do not specify an optimization level (-On, n=0,1,2,3), the default is -O2. If you want
more aggressive optimizations, you can use -O3. Note that using -O3 may not improve
performance for some programs.

Turn inlining on: -ip or -ipo

Use of -ip enables additional interprocedural optimizations for single file compilation. One of
these optimizations enables the compiler to perform inline function expansion for calls to
functions defined within the current source file.

Use of -ipo enables multifile interprocedural (IP) optimizations (between files). When you
specify this option, the compiler performs inline function expansion for calls to functions
defined in separate files.

Parallelize your code: -openmp or -parallel

-openmp handles OMP directives and -parallel looks for loops to parallelize.

For more compiler/linker options, read man ifort, man icc, or

%ifort -help
%icc -help

Porting to Columbia 87

http://www.nas.nasa.gov/kb/Modules_115.html

Porting to Columbia: With SGI's MPT

DRAFT

This article is being reviewed for completeness and technical accuracy.

The available SGI MPT modules on Columbia are:

mpt.1.16.0.0
mpt.1.18.0.0
mpt.1.19.0.0
mpt.1.22.0.0
mpt.1.25

The current default version is mpt.1.16.0.0.

Environment Variables

On Columbia, when you load any of the above MPT modules, several environment
variables such as CPATH, INCLUDE, LD_LIBRARY_PATH, etc., are modified by
pre-pending the appropriate MPT directories. Also, the following MPT-related environment
variables are modified from their default values for improved performance:

setenv MPI_BUFS_PER_HOST 256
setenv MPI_BUFS_PER_PROC 256
setenv MPI_DSM_DISTRIBUTE

The meanings of these variables and their default values are:

MPI_BUFS_PER_HOST

Determines the number of shared message buffers (16 KB each) that MPI is to
allocate for each host (i.e., C21, C22, C23, C24). These buffers are used to send
and receive long inter-host messages.

Default: 32 pages (1 page = 16KB) for mpt.1.16, mpt.1.18, mpt.1.19, mpt.1.22
Default: 96 pages (a page = 16KB) for mpt.1.25

•

MPI_BUFS_PER_PROC

Determines the number of private message buffers (16 KB each) that MPI is to
allocate for each process. These buffers are used to send long messages and
intra-host messages.

Default: 32 pages (1 page = 16KB)

•

Porting to Columbia: With SGI's MPT 88

MPI_DSM_DISTRIBUTE (toggle)

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the host with which that CPU is
associated. This feature can also be overridden by using dplace or omplace. This
feature is most useful if running on a dedicated system or running within a cpuset.

Default: Not enabled

•

Building Applications

Building MPI applications with SGI's MPT library simply requires linking with -lmpi and/or
-lmpi++. See the article SGI MPT for some examples.

Running Applications

MPI executables built with SGI's MPT are not allowed to run on the
Columbia front-end node.

You can run your MPI job on C21 - C24 in an interactive PBS session or through a PBS
batch job. Use mpiexec (under /PBS/bin) or mpirun to start your MPI processes. For
example:

#PBS -lncpus=8
....
mpiexec -np N ./your_executable

The -np flag (with N MPI processes) can be omitted if the value of N is the same as the
value specified for ncpus.

Porting to Columbia: With SGI's MPT 89

Porting to Columbia: With OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build an OpenMP application, you need to use the -openmp Intel compiler flag:

%ifort -o your_executable -openmp program.f

Note that if you are compiling separate files, then -openmp is required at the link step to link
in the OpenMP library.

Running Applications

Note that OMP_NUM_THREADS is set to 1 by default for PBS jobs. Reset it to the number
of threads that you want.

Here is a sample PBS script for running OpenMP applications on Columbia:

#PBS -lncpus=8,walltime=1:00:00

setenv OMP_NUM_THREADS 8

cd $PBS_O_WORKDIR

./your_executable

Porting to Columbia: With OpenMP 90

Porting to Columbia: With MPI and OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build a hybrid MPI+OpenMP application, you need to compile your code with the
-openmp compiler flag and link in both the Intel OpenMP and the SGI MPT library:

%ifort -o your_executable -openmp program.f -lmpi

Running Applications

Process/thread placement is critical to the performance of MPI+OpenMP hybrid codes. Two
environment variables should be set to get the proper placement:

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the node with which that CPU is
associated. Currently, the CPUs are chosen by simply starting at relative CPU 0 and
incrementing until all MPI processes have been forked.

•

MPI_OPENMP_INTEROP

Setting this variable modifies the placement of MPI processes to better
accommodate the OpenMP threads associated with each process. For this variable
to take effect, you must also set MPI_DSM_DISTRIBUTE.

•

Also note that OMP_NUM_THREADS is set to 1 by default for PBS jobs. Reset it to the
number of threads that you want.

Here is a sample PBS script for running MPI+OpenMP hybrid (2 MPI processes, 4
OpenMP threads per MPI process) applications on Columbia:

#PBS -lncpus=8,walltime=1:00:00

setenv MPI_DSM_DISTRIBUTE
setenv MPI_OPENMP_INTEROP
setenv OMP_NUM_THREADS 4

cd $PBS_O_WORKDIR

mpirun -np 2 ./your_executable

Porting to Columbia: With MPI and OpenMP 91

Software Environment

Software: Overview

DRAFT

This article is being reviewed for completeness and technical accuracy.

Software on the NAS HECC systems include the operating systems, programming
environments, licensed or open source software, etc. The following lists the few directories
where you can find most of the software you need.

/bin : essential user commands binaries, such as cp, ls, mv, vi, etc.•
/lib : essential shared libraries and kernel modules, such as libc, libm, etc.•
/usr/bin : most user commands, such as cat, diff, ldd, etc.•
/usr/lib : libraries for programming and packages, such as libstdc++, libGL, etc.•
/usr/include : system's general-use include files for the C programming language•
/usr/local/bin : binaries added for local use, such as acct_ytd, bbftp, etc.•
/usr/local/lib : shell start up files, such as glocal.cshrc for NAS systems•
/PBS : software for submitting, monitoring and managing PBS jobs•
/nasa : licensed or open source software modules•

Except for those under /nasa, the binaries, libraries and include files above should have
been included in your default search path.

Read the articles on Modules to learn how to use licensed or open source software
managed by modules.

In addition, on Pleiades there are some useful tools provided by members of the Application
Performance and Productivity Group. They are stored under the directory /u/scicon/tools.

Software Environment 92

http://www.nas.nasa.gov/kb/index.php?View=entry&EntryID=115

Operating Systems

DRAFT

This article is being reviewed for completeness and technical accuracy.

All NAS HECC systems (including Pleiades and Columbia) are running SGI ProPack for
Linux which is designed to enhance the Linux experience for SGI systems.

To find the Linux kernel version number on a host, use:

%uname -r
To find the SGI release number on a host, use:

%cat /etc/sgi-release
All Pleiades front-ends and compute nodes are running with ProPack 7SP1.

All Columbia systems, including both frond-ends and compute systems, are running with
ProPack 6SP5.

Operating Systems 93

Modules

DRAFT

This article is being reviewed for completeness and technical accuracy.

A system called "modules" to centralize the location of licensed products from vendors or
software from public domain is installed on all NAS HECC systems.

To use the modules commands, you have to do either one of the following first:

Source the following files in your .cshrc or .profile

in .cshrc (for csh users)

source /usr/local/lib/global.cshrc
in .profile (for bash users)

source /usr/local/lib/global.profile

1.

In the shell that you want to use the module commands, do one of the following:

(csh users)

%source /usr/share/modules/init/csh
(bash users)

%. /usr/share/modules/init/bash

2.

The following are useful module commands to remember:

%module avail

to find out what modules are available.

•

%module list

to list which modules are loaded in your environment.

•

%module purge

to unload all loaded modulefiles.

•

%module load module_name1 module_name2 ... module_nameN•

Modules 94

to load the desired modules.

%module switch old_module_name new_module_name

to switch between two modules.

•

%module show module_name

to show changes to the environment that will happen if you load module_name.

•

Modules 95

Table of All Modules

DRAFT

This article is being reviewed for completeness and technical accuracy.

The table below shows the available software managed through modules on Pleiades
and/or Columbia. To request installation of a software as a module, please send an email to
support@nas.nasa.gov

Note that the name of a software module may contain:

software name•
vendor name•
version number•
varieties such as what compiler and/or what library is used to build the software•

For example,

comp-intel/11.1.072 represents the Intel Compiler version 11.1.072.•
mpi-sgi/mpt.2.04.10789 represents the SGI MPI library version mpt.2.04.10789.•
mpi-mvapich2/1.4.1/intel represents the MVAPICH2 MPI library version 1.4.1 built
with an Intel compiler.

•

Use the "module avail" command to see all the available versions and provide the full name
of a module when you decide to load a module.

Available Modules (as of 30 August 2010)
Software Platforms Function
Intel compiler Pleiades/Columbia Compiler
Intel mkl Pleiades/Columbia Math/Scientific Library
Intel mpi Pleiades/Columbia MPI Library
SGI mpt Pleiades/Columbia MPI Library
SGI scsl Columbia Math/Scientific Library
automake Columbia Makefile Tool
boost Columbia C++ Library
cpan Pleiades Comprehensive Perl Archive Network
cscope Columbia Source Code Browsing Tool
drm Pleiades X Window Library Tool
eclipse Pleiades Software Development Environment
emacs Pleiades Text Editor
ensight Pleiades/Columbia Data Visualization and Analysis Tool

Table of All Modules 96

fieldview Pleiades/Columbia Data Visualization and Analysis Tool
flex Pleiades Text Scanner Generation Tool
fluent Pleiades CFD Modeling Application
gaussian Pleiades/Columbia Quantum Chemistry Application
gcc Pleiades/Columbia GNU C/C++ Compiler
gd Pleiades/Columbia Images Creation Library
git Pleiades/Columbia Version Control System
glib Pleiades/Columbia Low-level Core Library
gmp Pleiades/Columbia Math Library
gnuplot Pleiades/Columbia Data Visualization Tool
grace Pleiades/Columbia Data Visualization Tool
grads Pleiades/Columbia Data Visualization and Analysis Tool
gridgen Pleiades/Columbia CFD Grid Generation Tool
gsl Pleiades/Columbia GNU Scientific Library
hcss Pleiades/Columbia Herschel Common Science System
hdf4 Pleiades/Columbia I/O Library and Tools
hdf5 Pleiades/Columbia I/O Library and Tools
idl Pleiades/Columbia Data Visualization and Analysis Tool
idn Pleiades GNU Libidn
imagemagick Pleiades/Columbia Image Tool
java-sdk Columbia Programming Language
jpeg Columbia Image Tool
jvm Pleiades Java Virtual Machine
libxml Columbia C Parser and Toolkit
lsdyna3d Pleiades/Columbia Finite Element Application

matlab Pleiades/Columbia Numerical Computing Environment and ProgrammingLanguage
mlp Columbia Multi-Level Parallelism Library
mpfr Pleiades Multiple-Precision Floating-point Computations Library
mpich2 Columbia MPI Library
mvapich2 Pleiades MPI Library
ncarg Pleiades/Columbia Graphics Library for Scientifc Data
ncl Pleiades/Columbia NCAR Command Language
nco Pleiades/Columbia netCDF Operators
netcdf Pleiades/Columbia I/O Library
octave Pleiades/Columbia Numerical Computations Language
paraview Pleiades Data VIsualization and Analysis Tool
parmetis Pleiades/Columbia Math/Numerical Library
pdf Columbia PDF File Generation Library

Table of All Modules 97

perl Columbia Programming Language
petsc Columbia Math/Numerical Library
parallel netcdf Pleiades/Columbia Parallel I/O Library
png Columbia Portable Network Graphics Format
pyMPI Columbia MPI Program Development with Python
python Pleiades/Columbia Programming Language
ruby Pleiades Programming Language
svn Pleiades/Columbia Revision Control Application
swig Pleiades/Columbia Software Development Tool
tcl-tk Pleiades/Columbia Scripting Language
tecplot Pleiades/Columbia Data Visualization and Analysis Tool
texlive Pleiades TeX System Application
totalview Pleiades/Columbia Debugger
udunits Pleiades/Columbia Data Format Library
visit Pleiades/Columbia Data Visualization and Analysis Tool
xv Pleiades Images Display Application

xxdiff Pleiades Graphical File And Directories Comparator And Merge
Tool

yaml Pleiades/Columbia Human-Readable Data Serialization Format
zlib Columbia Data Compression Library

Table of All Modules 98

Licensed Application Software

Licensed Application Software: Overview

DRAFT

This article is being reviewed for completeness and technical accuracy.

A few licensed applications from different vendors are installed on NAS HECC systems
under the /nasa directory. They are either purchased by NAS (with justification that many
users need it) or by users themselves. If you would like to use a licensed application which
is not yet available on NAS HECC systems, you may have to purchase the license yourself.

Licensed Application Software 99

Tecplot

DRAFT

This article is being reviewed for completeness and technical accuracy.

Tecplot 360 is a CFD and Numerical Simulation Visualization Software used in
post-processing simulation results. Common tasks associated with post-processing
analysis of flow solver (e.g. Fluent, STAR-CD, OpenFOAM) can include such tasks as:

Calculating grid quantities (e.g. aspect ratios, skewness, orthogonality and stretch
factors)

•

Normalizing data; Deriving flow field functions like pressure coefficient or vorticity
magnitude

•

Verifying solution convergence•
Estimating the order of accuracy of solutions•
Interactively exploring data through cut planes (a slice through a region),
iso-surfaces (3-D maps of concentrations), particle paths (dropping an object in the
"fluid" and watching where it goes).

•

As of Dec. 2008, the Tecplot license at NAS no longer has restrictions on the number of
copies of Tecplot that can be run concurrently.

Note: If you have set the stacksize with a command like "limit stacksize unlimited", you will
have to reduce the stacksize for Tecplot to run. For example,

%limit stacksize 2000000

For more information, please visit Tecplot's documentation page.

See also:

http://en.wikipedia.org/wiki/Tecplot

Tecplot 100

http://www.tecplot.com/Support/Documentation.aspx
http://en.wikipedia.org/wiki/Tecplot

IDL

DRAFT

This article is being reviewed for completeness and technical accuracy.

IDL is a software for data analysis, visualization, and cross-platform application
development. IDL combines tools for any type of project, from "quick-look," interactive
analysis and display to large-scale commercial programming projects.

For more information, please visit the IDL home page.

There are 6 licenses available for 6 users to use IDL at the same time. If you are not able to
use idl because the licenses are being used, try using it at a later time, or issue the
command 'lmstat -a' to find out how many licenses are in use.

See also:

http://en.wikipedia.org/wiki/IDL_(programming_language)

IDL 101

http://www.ittvis.com/ProductServices/IDL.aspx
http://en.wikipedia.org/wiki/IDL_(programming_language)

LS-DYNA

DRAFT

This article is being reviewed for completeness and technical accuracy.

LS-DYNA is a general-purpose transient dynamic finite element program capable of
simulating complex real world problems. It is optimized for shared- and distributed-memory
Unix, Linux, and Windows based, platforms.

Current license (good until Aug. 31, 2011) allows upto 4 CPUs.

Typical usage:

ls971d NCPUS=$OMP_NUM_THREADS I=**.key

mpiexec -np xx mpp971d I=**.key

Use the lstc_qrun command to check how many CPUs are using the license. Use the
lstc_qkill command to release the license if it is not released automatically after a job is
terminated.

For more information, please visit the LS-DYNA web page.

See also:

http://en.wikipedia.org/wiki/LS-DYNA

LS-DYNA 102

http://www.lstc.com/lsdyna.htm
http://en.wikipedia.org/wiki/LS-DYNA

Matlab

DRAFT

This article is being reviewed for completeness and technical accuracy.

Matlab is a numerical computing environment and programming language. Created by The
MathWorks, Matlab allows easy matrix manipulation, plotting of functions and data,
implementation of algorithms, creation of user interfaces, and interfacing with programs in
other languages. Although it specializes in numerical computing, an optional toolbox
interfaces with the Maple symbolic engine, allowing it to be part of a full computer algebra
system.

For more information, please visit the Matlab web site at MathWorks.

Note: Matlab 2010 does not work on Pleiades or Columbia yet because
of technical issues.

See also:

http://en.wikipedia.org/wiki/Matlab

Matlab 103

http://www.mathworks.com/products/matlab/
http://en.wikipedia.org/wiki/Matlab

Gaussian

DRAFT

This article is being reviewed for completeness and technical accuracy.

Gaussian 03 is a suite of electronic structure programs. It is used by chemists, chemical
engineers, biochemists, physicists and others for research in established and emerging
areas of chemical interest.

Starting from the basic laws of quantum mechanics, Gaussian predicts the energies,
molecular structures, and vibrational frequencies of molecular systems, along with
numerous molecular properties derived from these basic computation types. It can be used
to study molecules and reactions under a wide range of conditions, including both stable
species and compounds which are difficult or impossible to observe experimentally such as
short-lived intermediates and transition structures.

For more information, please see the Gaussian manual or the Gaussian web site.

Two versions (c.02 and e.01) of Gaussian03 have been installed on Columbia systems. To
use the older c.02 version, do the following in your PBS script:

module load gaussian.03.c02
source $g03root/g03/bsd/g03.login

g03 input output

To use the newer e.01 version (built with intel-comp.10.0.023 and intel-mkl.9.1.023), do:

module load gaussian.03.e.01
source $g03root/g03/bsd/g03.login

g03 input output

If you are a bash user, then do:

. /usr/share/modules/init/bash
module load gaussian.03.e.01
. $g03root/g03/bsd/g03.profile

g03 input output

See also:

http://en.wikipedia.org/wiki/GAUSSIAN

Gaussian 104

http://www.gaussian.com/g_ur/g03mantop.htm
http://www.gaussian.com/
http://en.wikipedia.org/wiki/GAUSSIAN

FieldView

DRAFT

This article is being reviewed for completeness and technical accuracy.

FieldView is Intelligent Light's CFD post-processing software to quickly identify important
flow features and characteristics in simulations. It allows interactive exploration for thorough
understanding of results. You can use it to examine and compare cases, extract critical
values, and make presentations.

Current license allows up to 4 concurrent uses.

For more information, see Intelligent Light's FieldView home page.

FieldView 105

http://www.ilight.com/fieldview.php

Ensight

DRAFT

This article is being reviewed for completeness and technical accuracy.

EnSight is a software package from CEI that is used for analyzing, visualizing and
communicating high-end scientific and engineering datasets. It is a post processing
environment with an extensive list of features.

Please see the CEI EnSight home page to get more information.

Ensight 106

http://www.ensight.com/

Gridgen

DRAFT

This article is being reviewed for completeness and technical accuracy.

Gridgen is Pointwise's meshing software used by engineers and scientists to generate high
quality grids for engineering analysis.

For more information, please visit the Gridgen home page at the Pointwise web site.

Gridgen 107

http://www.pointwise.com/gridgen/

Running Jobs with PBS

Portable Batch System (PBS): Overview

All NAS facility supercomputers use the Portable Batch System (PBS) from Altair for batch
job submission, job monitoring, and job management. Note that different systems may use
different versions of PBS, so the available features may vary slightly from system to
system.

Batch Jobs

Batch jobs run on compute nodes, not the front-end nodes. A PBS scheduler allocates
blocks of compute nodes to jobs to provide exclusive access. You will submit batch jobs to
run on one or more compute nodes using the qsub command from an interactive session
on one of the front-end nodes (such as, pfe[1-12], bridge[1-2] for Pleiades or cfe2 for
Columbia).

Normal batch jobs are typically run by submitting a script. A "jobid" is assigned after
submission. When the resources you request become available, your job will execute on
the compute nodes. When the job is complete, the PBS standard output and standard error
of the job will be returned in files available to you.

Take carefully note when porting job submission scripts from systems outside of the NAS
environment or between the Pleiades and Columbia supercomputers you may need to
make changes to your existing scripts to make them work properly on these systems.

Interactive Batch Mode

PBS also supports an interactive batch mode, using the qsub -I, where the input and output
is connected to the user's terminal, but the scheduling of the job is still under control of the
batch system.

Queues

The available queues on different systems vary, but all typically have constraints on
maximum wall-time and/or the number of CPUs allowed for a job. Some queues may also
have other constraints or be restricted to serving certain users or groups. In addition, to
ensure that each NASA mission directorate is granted their allocated share of resources at
any given time, mission directorate limits (called "shares") are also set on Pleiades and
Columbia.

Running Jobs with PBS 108

See man pbs for more information.

Portable Batch System (PBS): Overview 109

Job Accounting

DRAFT

This article is being reviewed for completeness and technical accuracy.

Usage on the HECC machines at NAS, except for the front-end machines, is charged.

Starting May 1, 2011, the accounting unit is the Standard Billing Unit (SBU). The SBUs
charged to a PBS job running on the compute node(s) is:

 SBU charged = Wall_Clock_Hours_Used * Number of MAUs * SBU Rate

where the MAU represents the minimum allocatable unit of resources available through
PBS. On Pleiades, an MAU is a node (with 8 cores for Harpertown and Nehalem-EP or 12
cores for Westmere in each node). On Columiba, an MAU has 4 cores. Charging is based
on the number of MAUs allocated to a job, not how many cores are actually used during
run-time. Once a user is allocated the resources, that user has exclusive access to those
resources until the user's job completes or exceeds its requested wall-clock time.

The SBU rate for each of the NAS processors is outlined below:

Host SBU Rate (per MAU)
Pleiades Westmere-EP nodes 1.00
Pleiades Nehalem-EP nodes 0.80
Pleiades Harpertown nodes 0.45
Columbia Itanium-2 0.18

In addition, charges on Columbia apply both to jobs that run successfully and those that are
interrupted. Interrupted jobs are charged by taking the elapsed job time in hours,
subtracting 1 hour, multiplying that by the number of MAUs used, and then deducting the
resulting amount from the allocation. (Users are encouraged to have their applications
checkpoint roughly every hour.)

In the near future, interruptions on Pleiades will be handled in a similar manner.

For example:

If you have a 24-hour job on Columbia that requires 16 MAUs (i.e., 64 cores), It has run for
12 hours and the system crashes. The accounting system will take the 12 hours, subtract 1
hour, and compute the SBUs (11 hours X 16 MAUs x 0.18 = 31.68 SBUs), which will then
be subtracted from your allocation for your GID.

Job Accounting 110

Job Accounting Utilities

DRAFT

This article is being reviewed for completeness and technical accuracy.

The job accounting utilities "acct_ytd" and "acct_query" can be used to obtain resource
usage and charging information about your account, the accounts of other users on your
project, and the project as a whole. Daily usage totals for each account are available for the
current operational period.

acct_ytd

The "acct_ytd" command provides a year-to-date summary of accounting information
for groups to which a user belongs. It will normally be accurate as of midnight the
previous night, when accounting was last run.

A number of parameters can be used with "acct_ytd", but the simpliest way is to type
"acct_ytd" on a host without any parameters. This produces a line of output for each
project you have access to on that host.

%acct_ytd
You can also specify the host group and/or a specific GID (for example, a0800).

%acct_ytd -cpleiades a0800 %acct_ytd -ccolumbia a0800

To find the allocations and usages of all your GIDs on all hosts, use the -call flag.

%acct_ytd -call
See man acct_ytd on Pleiades and Columbia for more information.

•

acct_query

The "acct_query" command searches and displays process-level billing records. This
means that while totals over a period or for each day in a period are possible, you
can also obtain detailed billing records for each process run in a period.

For example, to see all the SBU usage, beginning June 1, 2010, ending July 1, 2010,
for all projects and on all hosts by user zsmith:

%acct_query -b06/01/10 -e07/01/10 -pall -call -uzsmith
To see the current SBU usage for the operational year 2010 (defined as May 1, 2010
to May 1, 2011 for most mission directorates) for all projects and on all hosts by user
zsmith:

%acct_query -y10 -pall -call -uzsmith

•

Job Accounting Utilities 111

Eligible hostnames include:

columbia211.
columbia222.
columbia233.
columbia244.
pbs15.
pleiades (for Harpertown nodes)6.
pleiades_N (for Nehalem nodes)7.
pleiades_W (for Westmere nodes)8.

See man acct_query on Pleiades and Columbia for more information.

Job Accounting Utilities 112

Multiple GIDs and Charging to a specific GID

DRAFT

This article is being reviewed for completeness and technical accuracy.

Each approved project is assigned a project id (GID). Members of a GID are authorized to
use the resources allocated to that GID. For those users who have access to multiple GIDs,
be aware that only one of those GIDs is considered your default.

Use the "groups" command to find which GIDs you are a member of. The following example
shows that user zsmith is a member of the groups a0800, a0907, all, and e0720.

%groups zsmith
zsmith : a0800 a0907 all e0720

The first GID from the "groups" list should be your default GID. This can be verified through
the /etc/passwd file. For example, the /etc/passwd file has an entry for user zsmith with the
GID 20800 (which is the same as a0800, his default GID).

%grep zsmith /etc/passwd
zsmith:x:6666:20800:Z. Smith,,650-604-4444,:/u/zsmith:/bin/csh

When you use resources on the compute nodes through PBS jobs, SBUs are deducted
from your default GID unless you specify otherwise. To charge resource usage to an
alternative GID for a batch job, you can use the PBS flag "-W group_list=account" either in
your script or on the "qsub" command line. For example:

#PBS -W group_list=a0907
or

%qsub -W group_list=a0907

Multiple GIDs and Charging to a specific GID 113

Commonly Used PBS Commands

DRAFT

This article is being reviewed for completeness and technical accuracy.

man pbs provides a list of all PBS commands. The four most commonly used PBS
commands, qsub, qstat, qdel and qhold, are briefly described below.

qsub

Submit a batch job to the specified queue using a script

%qsub -q queue_name job_script
Common possibilities for queue_name at NAS include normal, debug, long,
and low. When queue_name is omitted, the job is routed to the default queue,
which is the normal queue.

♦

Submit an interactive PBS job

%qsub -I -q queue_name -lresource_list

No job_script should be included when submitting an
interactive PBS job.
The resource_list typically specifies the number of nodes, cpus, amount of
memory and walltime needed for this job. The following example shows a
request for Pleides with 2 nodes, 8 cpus per node, and a walltime limit of 3
hours.

%qsub -I -lselect=2:ncpus=8,walltime=3:00:00
See man pbs_resources for more information on what resources can be
specified. If -lresource_list is omitted, the default resources for the specified
queue is used. When queue_name is omitted, the job is routed to the default
queue, which is the normal queue.

♦

•

qstat

Display queue information

%qstat -Q queue_name
%qstat -q queue_name
$qstat -fQ queue_name
These commands display in different formats all the queue available on the
systems, their constraints and status. The queue_name is optional.

♦

Display job status♦

•

Commonly Used PBS Commands 114

Display all jobs in any status (running, queued, held)
%qstat -a

◊

Display all running or suspended jobs
%qstat -r

◊

Display the execution hosts of the running jobs
%qstat -n

◊

Display all queued, held or waiting jobs
%qstat -i

◊

Display jobs that belong to the specified user
%qstat -u user_name

◊

Display any comment added by the administrator or scheduler
%qstat -s
This option is typically used to find clues of why a job has not started
running.

◊

Display detailed information about a specific job
%qstat -f job_id

◊

Display status informaton for finished jobs (within the past 7 days)
%qstat -xf job_id
%qstat -xu user_id

This option is only available in newer version of PBS, which has been
installed on Pleiades, but not on Columbia.

◊

Some of these flags can be combined when checking the job
status.

qdel

Delete a job

%qdel job_id

•

qhold

Hold a job

%qhold job_id
Only the job owner or a system administrator with su or root privilege can place a
hold on a job. The hold can be released using the "qrls" command.

•

For more detailed information on each command, see their corresponding man pages.

Commonly Used PBS Commands 115

The devel queue on Pleiades is served by a non-default PBS server, pbspl3, and the syntax
for qsub, qstat, and qdel jobs in the devel queue needs to include pbspl3. Read this article
for more information.

Commonly Used PBS Commands 116

http://www.nas.nasa.gov/hecc/support/kb/entry/290
http://www.nas.nasa.gov/hecc/support/kb/entry/290

Commonly Used QSUB Options in PBS Scripts or in the
QSUB Command Line

DRAFT

This article is being reviewed for completeness and technical accuracy.

The "qsub" options can be read from the PBS directives of a PBS job_script or from the
qsub command line. For a complete list of available options, see man qsub. The more
commonly used ones are listed below.

-S shell_name
Specifies the shell that interprets the job script

-V
Declares that all environment variables in the qsub command's environment are to
be exported to the batch job

-v variable_list
Lists environment variables to be exported to the job

-q queue_name
Defines the destination of the job. The common possibilities for queue_name on
Pleides and Columbia include normal, debug, long, and low

The devel queue on Pleiades is served by a non-default PBS server, pbspl3, and the
syntax for qsub jobs to the devel queue needs to include pbspl3. Read this article for
more information.

-l resouce_list
Specifies the resources that are required by the job and establishes a limit to the
amount of resources that can be consumed. Commonly used resource items are
slect, ncpus, walltime, and memory. See man pbs_resources for a complete list of
available resources.

-e path
Directs the standard error output produced by the request to the stated file path

-o path
Directs the standard output produced by the request to the stated file path.

-j join
Declares that the standard output and error streams of the job should be merged
(joined). The values for join can be:

Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line 117

http://www.nas.nasa.gov/hecc/support/kb/entry/290
http://www.nas.nasa.gov/hecc/support/kb/entry/290

oe standard output and error streams are merged in the standard output file
eo standard error and output streams are merged in the standard error file

-m mail_options
Defines the set of conditions under which the execution server will send mail
message about the job. See man qsub for a list of mail_options.

-N name
Declares a name for the job

-W addl_attributes
Allows for the specification of additional job attributes
The most common ones are
-W group_list=g_list specifies the group the job runs under
-W depend=afterany:job_ID.server_name.nas.nasa.gov (for example,
12345.pbspl1.nas.nasa.gov) submits a job which is to be executed after job_ID has
finished with any exit status
-W depend=afterok:job_ID.server_name.nas.nasa.gov (for example,
12345.pbspl1.nas.nasa.gov) submits a job which is to be executed after job_ID has
finished with no errors

-r y|n
Declares whether the job is rerunnable

The top of a PBS job_script contains PBS directives, each of which begins with the string
"#PBS". Here is an example for use on Pleiades.

#PBS -S /bin/csh
#PBS -V
#PBS -q long
#PBS -lselect=2:ncpus=8:mpiprocs=4:model=har,walltime=24:00:00
#PBS -j oe
#PBS -o /nobackup/zsmith/my_pbs_output
#PBS -N my_job_name
#PBS -m e
#PBS -W group_list=a0907
#PBS -r n

The resources and/or attributes set using options to the "qsub"
command line override those set in the directives in the PBS
job_script.

Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line 118

New Features in PBS

DRAFT

This article is being reviewed for completeness and technical accuracy.

Some of the new features relevant to users are listed below:

Estimate job start times (version 10.4)

PBS can estimate the start time for jobs. To show the estimated start times (in the
Est Start field), use

%qstat -T

This feature is still under testing by NAS system
administrators and is not yet available to users.

•

Show the processor model (version 10.4)

Processor model (for example, Harpertwon, Nehalem-EP, and Westmere-EP) can
be displayed with

%qstat -W o=+model

•

Show job history (version 10.1)

Use the PBS "-x" option to obtain job history information, including the submission
parameters, start/end time, resources used, etc., for jobs that finished executation,
were deleted or are still running.

The job history for finished jobs is preserved for a specific duration. After the duration
has expired, PBS deletes the job history information and it is no longer available.
Currently, the duration is set to be 7 days on Pleiades.

%qstat -fx job_id

•

Advance and Standing reservations (version 9.2)

An advance reservation can be made for a set of resources for a specified time. The
reservation is only available to a specific user or group of users.

A standing reservation is an advance reservation which recurs at specified times. For
example, the user can reserve 8 nodes every Wednesday from 5pm to 8pm, for the
next month.

•

New Features in PBS 119

The reservation is made using the "pbs_rsub" command. PBS either confirms that
the reservation can be made, or rejects the request. Once he reservation is
confirmed, PBS creates a queue for the reservation's jobs. Jobs are then submitted
to this queue.

The following example shows the creation of an advance reservation asking for 1
node with 8 cpus, a start time of 11:30 and a duration of 30 minutes.

%pbs_rsub -R 1130 -D 00:30:00 -l select=1:ncpus=8

A reservation can be deleted using the "pbs_rdel" command.

For more information, see man pbs_rsub and man pbs_rdel.

Requests to use advance and standing reservations must be
approved by NAS management. Only staff with special privilege
can create the reservations for users.

New Features in PBS 120

Checkpointing and Restart

DRAFT

This article is being reviewed for completeness and technical accuracy.

None of the NAS HEC systems has an automatic checkpoint capability made available by
the operating system. For jobs that need lots of resources and/or long wall-time, you should
have a checkpoint/restart capability implemented in the source code or job script.

PBS automatically restarts unfinished jobs after system crashes. If you do not want PBS to
restart your job, make sure to add the following in your PBS script:

#PBS -r n

Checkpointing and Restart 121

PBS Environment Variables

DRAFT

This article is being reviewed for completeness and technical accuracy.

There are a number of environment variables provided to the PBS job. Some are taken
from the user's environment and carried with the job. Others are created by PBS. Still
others can be explicitly created by the user for exclusive use by PBS jobs. All PBS-provided
environment variable names start with the characters "PBS_". Some are then followed by a
capital O ("PBS_O_") indicating that the variable is from the job's originating environment
(i.e. the user's).

The following lists a few useful PBS environment variables.

PBS_O_WORKDIR
contains the name of the directory from which the user submitted the PBS job

PBS_O_PATH
value of PATH from submission environment

PBS_JOBID
contains the PBS job identifier

PBS_JOBDIR
pathname of job-specific staging and execution directory

PBS_NODEFILE
contains a list of vnodes assigned to the job

TMPDIR
The job-specific temporary directory for this job
defaults to /tmp/pbs.job_id on the vnodes

PBS Environment Variables 122

PBS Scheduling Policy

DRAFT

This article is being reviewed for completeness and technical accuracy.

This article gives a simplified explanation of the PBS scheduling policy on Pleiades and
Columbia

PBS scheduling policies change frequently, in response to varying demands and
workloads. The current policy (March 1, 2011), simplified, states that jobs are sorted in the
following order: current mission directorate CPU use, job priority, queue priority, and job
size (wide jobs first).

In each scheduling cycle, PBS examines the jobs in sorted order, starting a job if it can. If
the job cannot be started immediately, it is either scheduled around or simply bypassed for
this cycle.

There are numerous reasons why jobs won't start, such as:

The queue is at its running job limit•
You are at your running job limit•
The queue is at its CPU limit•
The mission directorate is at its CPU share limit and the job cannot borrow from
another mission

•

Not enough CPUs are available•

Notice that a high-priority job might be blocked by some limit, while a lower priority job, from
a different user or asking for fewer resources, might not be blocked.

If your job is waiting in the queue, use the following commands to get some information
about why it has not started running.

pfe1% qstat -s jobid
or
pfe1% qstat -f jobid | grep -i comment

On Pleiades, output from the following command shows the amount of resources (broken
down into Harpertown, Nehalem, and Westmere processors) used and borrowed by each
mission directorate, and the resources each mission is waiting for:

pfe1% /u/scicon/tools/bin/qs

The following command provides the order of jobs that PBS schedules to start at the
current scheduling cycle. It also provides information regarding processor type(s), mission,

PBS Scheduling Policy 123

and job priority:

pfe1% qstat -W o=+model,mission,pri -i
The policy described above could result in a large, high-priority job being blocked forever by
a steady stream of smaller, low-priority jobs. To prevent jobs from languishing in the queues
for an indefinite time, PBS reserves resources for the top N jobs (currently, N is 4), and
doesn't allow lower priority jobs start if they would delay the start time of one of the top job
("backfilling"). Additional details are given below.

PBS Sorting Order

Mission shares

Each NASA mission directorate is allocated a certain percentage of the CPUs in the
system. (See Mission Shares Policy on Pleiades .) A job cannot start if that action
would cause the mission to exceed its share, unless another mission is using less
than its share and has no jobs waiting. In this case, the high-use mission can
"borrow" CPUs from the lower-use mission for up to a specified time (currently,
max_borrow is 4 hours).

So , if the job itself needs less than max_borrow hours to run, or if a sufficient
number of other jobs from the high-use mission will finish within max_borrow hours
to get back under its mission share, then the job can borrow CPUs.

When jobs are sorted, jobs from missions using less of their share are picked before
jobs from missions using more of their share.

•

Job priority

Job priority has three components. First is the native priority (the -p parameter to
qsub or qalter). Added to that is the queue priority. If the native priority is 0, then a
further adjustment is made based on how long the job has been waiting for
resources. Waiting jobs get a "boost" of up to 20 priority points, depending on how
long they have been waiting and which queue they are in.

This treatment is modified for queues assigned to the Exploration Systems Mission
Directorate (ESMD). For those queues, job priority is set by a separate set of policies
controlled by ESMD management.

•

Queue priority

Some queues are given higher or lower priorities than the default. (Run "qstat -Q" to
get current values.) Note that because the mission share is the most significant sort
criterion, job and queue priorities have little effect mission-to-mission.

•

Job size•

PBS Scheduling Policy 124

http://www.nas.nasa.gov/kb/Mission-Shares-Policy-on-Pleiades_168.html

Jobs asking for more CPUs are favored over jobs asking for fewer. The reasoning is
that, while it is easier for narrow jobs to fill in gaps in the schedule, wide jobs need
help collecting enough CPUs to start.

Backfilling

As mentioned above, when PBS cannot start a job immediately, if it is one of the first N
such jobs, PBS sets aside resources for the job before examining other jobs. That is, PBS
looks at the currently running jobs to see when they will finish (using the wall-time
estimates). From those finish times, PBS decides when enough resources (such as CPUs,
memory, mission share, and job limits) will become available to run the top job.

PBS then creates a virtual reservation for those resources at that time. Now, when PBS
looks at other jobs to see if they can start immediately, it also checks whether starting the
job would collide with one of these reservations. Only if there are no collisions will PBS start
the lower priority jobs.

This description applies to both Pleiades and Columbia, although the specific queues,
priorities, mission percentages, and other elements differ between the two systems.

PBS Scheduling Policy 125

PBS exit codes

DRAFT

This article is being reviewed for completeness and technical accuracy.

Do we need to have more details for some of the < 0 exit codes? - rh

The PBS exit value of a job may fall in one of four ranges:

X = 0 (= JOB_EXEC_OK)

This is a PBS special return value indicating that the job executed successfully

•

X < 0

This is a PBS special return value indicating that the job could not be executed.
These negative values are listed below:

-1 = JOB_EXEC_FAIL1

job exec failed, before files, no retry

♦

-2 = JOB_EXEC_FAIL2

job exec failed, after files, no retry

♦

-3 = JOB_EXEC_RETRY

job exec failed, do retry

♦

-4 = JOB_EXEC_INITABT

job aborted on MOM initialization

♦

-5 = JOB_EXEC_INITRST

job aborted on MOM init, checkpoint, no migrate

♦

-6 = JOB_EXEC_INITRMG

job aborted on MOM init, checkpoint, ok migrate

♦

-7 = JOB_EXEC_BADRESRT

job restart failed

♦

•

PBS exit codes 126

-8 = JOB_EXEC_GLOBUS_INIT_RETRY

Init. globus job failed. do retry

♦

-9 = JOB_EXEC_GLOBUS_INIT_FAIL

Init. globus job failed. no retry

♦

0 <= X < 128 (or 256 depending on the system)

This is the exit value of the top process in the job, typically the shell. This may be the
exit value of the last command executed in the shell or the .logout script if the user
has such a script (csh).

•

X >=128 (or 256 depending on the system)

This means the job was killed with a signal. The signal is given by X modulo 128 (or
256). For example an exit value of 137 means the job's top process was killed with
signal 9 (137 % 128 = 9).

•

PBS exit codes 127

Front-End Usage Guidelines

Pleiades Front-End Usage Guidelines

DRAFT

This article is being reviewed for completeness and technical accuracy.

The front-end systems pfe[1-12] and bridge[1,2] provide an environment that allows you to
get quick turnaround while performing the following:

file editing•
compiling•
short debugging and testing session•
batch job submission to the compute systems•

Bridge[1,2], with 4 times the memory on pfe[1-12] and better interconnects, can also be
used for the following two functions:

Post processing

These nodes have 64-bit versions of IDL, Matlab, and Tecplot installed and have 64
GB of memory (4 times the amount of memory on pfe[1-12]). The bridge nodes will
run these applications much faster than on pfe[1-12].

1.

File transfer between Pleiades and Columbia or Lou

Note that both the Pleiades Lustre filesystems (/nobackupp[10-70]) and the
Columbia CXFS filesystems (/nobackup1[1-h], /nobackup2[a-i]) are mounted on the
bridge nodes.

To copy files between the Pleiades Lustre and Columbia CXFS filesystems, log in to
bridge[1,2] and use the cp command to perform the transfer. The 10 Gigabit Ethernet
(GigE) connections on the two bridge nodes are faster than the 1 GigE used on
pfe[1-12], therefore, file transfer out of Pleiades is improved when using the bridge
nodes.

File transfers from bridge[1,2] to Lou[1,2] will go over the 10 GigE interface by
default. The commands scp, bbftp, and bbscp are available to do file transfers. Since
bbscp uses almost the same syntax as scp, but performs faster than scp, we
recommend using bbscp over scp in cases where you do not require the data to be
encrypted when sent over the network.

2.

Front-End Usage Guidelines 128

The pfe systems ([pfe1-12]) have a 1 GigE connection, which
can be saturated by a single secure copy (scp). You will see
bad performance whenever more than one file transfer is
happening. Use of bridge1 and bridge2 for file transfers is
strongly recommended.

File transfers from the compute nodes to Lou must go through pfe[1-12] or
bridge[1,2] first, although going through bridge[1,2] is preferred for performance
consideration. See Transferring Files from the Pleiades Compute Nodes to Lou for
more information.

When sending data to Lou[1-2], please keep your largest individual file size under 1
TB, as large files will keep all of the tape drives busy, preventing other file restores
and backups. To prevent the filesystems on Lou[1-2] from filling up, please limit total
data transfers to 1 TB and then wait an hour before continuing. This allows the tape
drives to write the data to tape.

Additional restrictions apply to using these front-end systems:

No MPI jobs are allowed to run on pfe[1-12], bridge[1,2]1.

A job on pfe[1-12] should not use more than 8 GB. When it does, a courtesy email is
sent to the owner of the job.

2.

A job on bridge[1,2] should not use more than 56 GB. When it does, a courtesy email
is sent to the owner of the job.

3.

Pleiades Front-End Usage Guidelines 129

Columbia Front-End Usage Guidelines

DRAFT

This article is being reviewed for completeness and technical accuracy.

The front-end system, cfe2, provide an environment that allows users to get quick
turnaround while performing the following: file editing; file management; short debugging
and testing sessions; and batch job submission to the compute systems.

Running long and/or large (in terms of memory and/or number of processors) debugging or
production jobs interactively or in the background of cfe2 is considered to be inconsiderate
behavior to the rest of the user community. If you need help submitting such jobs to the
batch systems, please contact a NAS scientific consultant at (650) 604-4444 or
1-800-331-USER or send e-mail to: support@nas.nasa.gov

Jobs that cause significant impact on the system load of the Columbia front-end machine
(cfe2) are candidates for removal in order to bring the front-end systems back to a normal
and smooth environment for all users. A cron job regularly monitors the system load and
determines if job removal is necessary. The criteria for job removal are described below.
Owners of any removed jobs will receive a notification e-mail.

To be eligible for removal, the number of processors a front-end interactive job uses
can be one (1) or more. Exceptions to this are those programs, utilities, etc. common
to users and/or NASA missions that are listed in an "exception file". Examples of
these would be:

bash cp csh emacs gzip rsync scp sftp sh ssh tar tcsh

Users can submit program names to be added to this exception file by mailing
requests to: support@nas.nasa.gov

1.

For qualifying processes, the CPU time usage of each process in a job has, on the
average, exceeded a threshold defined as:

(20 min x 8 / number of processes for the job)

That is, a baseline for removal is a job with 8 processors running for more than 20
minutes. The maximum amount of time allowed for each processor in a job is scaled
using the formula:

20 min x 8 cpu / number-of-processes

Therefore, the following variations are possible:

160 minutes = (20 * 8) / 1 cpu♦

2.

Columbia Front-End Usage Guidelines 130

80 minutes = (20 * 8) / 2 cpu♦
40 minutes = (20 * 8) / 4 cpu♦
20 minutes = (20 * 8) / 8 cpu♦
10 minutes = (20 * 8) / 16 cpu♦
5 minutes = (20 * 8) / 32 cpu♦
2.5 minutes = (20 * 8) / 64 cpu♦

The conditions of removal are subject to change, when necessary.

Columbia Front-End Usage Guidelines 131

PBS on Pleiades

Overview

Overview

On Pleiades, PBS (version 10.4) is used to manage batch jobs that run on the compute
nodes (3 different processor types, 9,984 nodes and 91,136 cores in total). PBS features
that are common to all NAS systems are described in other articles. Read the following
articles for Pleiades-specific PBS information:

queue structure•

resource request examples•
default variables set by PBS•
sample PBS scripts•

PBS on Pleiades 132

http://www.nas.nasa.gov/kb/Queue-Structure_192.html
http://www.nas.nasa.gov/kb/Resources-Request-Examples_188.html
http://www.nas.nasa.gov/kb/Default-Variables-Set-by-PBS_189.html
http://www.nas.nasa.gov/kb/Sample-PBS-Script-for-Pleiades_190.html

Queue Structure

Users should be aware of the PBS queue structure. To find the maximum and default
NCPUS (number of CPUs), the maximum and default wall time, the priority of the queue,
and whether the queue is disabled or stopped, use the command:

%qstat -Q
This command also provides statistics of jobs in the states of queued (Q), held (H), running
(R), or exiting (E).

Note that the queue structure will change from time to time. Below is a snapshot of the
output from this command on June 16, 2011.

%qstat -Q
Queue Ncpus/ Time/ State counts
name max/def max/def jm T/_Q/H/W/__R/E/B pr Info
======== =====/=== ======/===== == ================ === ========
normal --/ 8 08:00/01:00 -- 0/20/4/0/_60/0/0 0
debug 1025/ 8 02:00/00:30 -- 0/_3/0/0/__4/0/0 15
low --/ 8 04:00/00:30 -- 0/_0/0/0/__0/0/0 -10
long 8192/ 8 120:00/01:00 -- 0/_8/1/0/206/0/0 0
route --/ 8 --/ -- -- 0/_0/0/0/__0/0/0 0
idle --/ -- --/ -- -- 0/_0/0/0/__0/0/0 0 disabled
alphatst --/ -- 120:00/01:00 -- 0/_0/0/0/__0/0/0 0
ded_time --/ -- --/01:00 -- 0/_0/0/0/__0/0/0 0
devel 4800/ 1 02:00/ -- -- 0/_1/0/0/__5/0/0 0
wide --/ -- 120:00/01:00 -- 0/_1/0/0/__0/0/0 45 disabled
testing --/ -- --/00:30 -- 0/_0/0/0/__0/0/0 0
somd_spl --/ 8 240:00/01:00 -- 0/_0/0/0/__2/0/0 25
armd_spl 4900/ 8 120:00/01:00 10 0/_0/0/0/__0/0/0 15
normal_N --/ 8 120:00/01:00 -- 0/_5/0/0/_10/0/0 0
rtf --/ 8 --/01:00 -- 0/_0/0/0/__0/0/0 65
dpr --/ 8 --/00:10 -- 0/_0/0/0/__0/0/0 0
normal_W --/ 8 120:00/01:00 -- 0/60/5/0/_18/0/0 0
S1848368 744/ 1 04:00/ -- -- 0/_0/0/0/__0/0/0 0
kepler --/ 8 120:00/01:00 -- 0/12/0/0/_33/0/0 20
diags --/ -- 120:00/01:00 -- 0/_0/0/0/__0/0/0 0

The devel queue on Pleiades is served by pbspl3 (a non-default PBS server). The devel
queue requires pbspl3 to be included in the syntax for qsub, qstat, and qdel. For more
information, read the article Pleiades devel Queue.
To view more information about each queue, use:

%qstat -fQ queue_name
In the output of this command, you will find additional information such as:

acl_groups
Lists all GIDs that are allowed to run in the queue.
For the normal, debug, long, low and wide queues, all GIDs should be included.
Special queues, such as esmd_spl, armd_spl, somd_spl, clv_spl, etc., typically allow

Queue Structure 133

http://www.nas.nasa.gov/hecc/support/kb/entry/290

a few GIDs only.

default_chunk.model
Specifies the default processor model, if you do not specify the processor model
yourself.
All queues, except normal_N and normal_W, default to using nodes with Harpertown
model processors.

resources_min.ncpus
If defined, specifies the minimum NCPUs required for the queue.
The wide queue requires using a minimum of 1024 CPUs.

max_user_run
If defined, specifies the maximum number of jobs each user is allowed to run in the
queue.
For the normal queue, it is set at 10. For the debug queue, it is set at 2.

The normal_N and normal_W queues will be removed in the near
future. To request using the Nehalem-EP or Westmere nodes, use
"model=neh" or "model=wes" attribute in your resource_list. To
explicitly request Harpertown nodes, use "model=har". You can apply
the model attribute to any queue.

For example:

#PBS -q long
#PBS -l select=1:ncpus=12:model=wes

Queue Structure 134

Mission Shares Policy on Pleiades

DRAFT

This article is being reviewed for completeness and technical accuracy.

Mission Directorate shares have been implemented on Pleiades since Feb. 10, 2009.
Implementing shares guarantees that each Mission Directorate gets its fair share of
resources.

The share to which a job is assigned is based on the GID used by the job. Once all the
cores within a Mission Directorate's share have been assigned, other jobs assigned to that
share must wait, even if cores are available in a different Mission Directorate's share, with
the following exception:

When a Mission Directorate is not using all of its cores, other Mission Directorates can
borrow those cores, but only for jobs that will finish within 4 hours. When part of the
resource is unavailable, the total number of cores decreases, and each Mission Directorate
loses a proportionate number of cores.

You can display the share distribution by adding the "-W shares=-" option to the qstat
command. For example:

%qstat -W shares=-

Group Share% Use% Share Exempt Use Avail Borrowed Ratio Waiting
------- ------ ---- ------ ------ ----- ------ -------- ----- -------
Overall 100 0 159748 0 960 158788 0 0.01 960
 ARMD 24 18 38109 0 29680 8429 0 0.78 22512
 HEOMD 23 21 36521 0 34312 2209 0 0.94 28416
 SMD 51 50 80981 0 80968 13 0 1.00 113920
 NAS 2 0 3175 0 0 3175 0 0.00 20240

Mission shares are calculated by combining the mission's HECC share of the shared assets
combined with the mission-specific assets. The mission shares on Oct 3, 2011 are shown in
the second column of the above display. The amount of resources used and borrowed by
each mission and resources each mission is waiting for are also displayed.

An in-house utility, qs, provide similar information with details that break the resources into
the Harpertown, Nehalem-EP and Westmere-EP processor types and is available at
/u/scicon/tools/bin/qs.

The -h option of qs provides instructions on how to use it:

% /u/scicon/tools/bin/qs -h

Mission Shares Policy on Pleiades 135

usage: qs [-u] [-n N] [-b] [-p] [-d] [-r] [-f M,N] [-q N] [-t] [-v] [-h] [--file f]

 -u : show used resources only; don't show queued jobs

 -n N : show time remaining before N nodes are free

 -b : order segments in bars to help understand borrowing

 -p : plain output: i.e. no colors or highlights

 -d : darker colored resource bars (for a light background)

 -r : use Reverse video for displaying resource bars

 -f M,N : highlight nodes for jobs that finish in <= M minutes

 and <= N minutes [default M=60,N=240]

 (0 turns off highlighting)

 -q N : highlight nodes for jobs queued in last N minutes [3]

 (0 turns off highlighting)

 -t : show time remaining & nodes used for each running job

 --file f : reserved for debugging

 -v : (verbose) provide explanation of display elements

 -h : provide this message

Here is a sample output file of qs:

Mission Shares Policy on Pleiades 136

Mission Shares Policy on Pleiades 137

Resources Request Examples

Since Pleiades consists of three different processor types, Harpertown, Nehalem-EP and
Westmere-EP, keep the following in mind when requesting PBS resources for your job:

Starting May 1, 2011, charging on the usage of the three Pleiades processor types is
based on a common Standard Billing Unit which is on a per-node basis. The SBU
rate for each of the Pleiades processor type is:

Processor Type SBU Rate (per node)
Westmere-EP 1 (12 cores in a node)
Nehalem-EP 0.8 (8 cores in a node)
Harpertown 0.45 (8 cores in a node)

The actural amount of memory per node through PBS is slightly less, 7.6 GB/node
for Harpertown and 22.5 GB/node for Nehalem-EP and Westmere-EP.

Use the "model=[har,neh,wes]" attribute to request the processor type(s) for your
job. If the processor type is not specified in user's PBS resource list, the job is routed
to use the default processor type, Harpertown.

Example 1:

Here are some examples of requesting certain processor models for a 128-process
job:

#PBS -l select=16:ncpus=8:model=har
to run all 8 cores on each of 16 Harpertown nodes

#PBS -l select=32:ncpus=4:model=har
to run on only 4 cores on each of 32 Harpertown nodes
(note: will be charged for 32 nodes = 256 cores)

#PBS -l select=16:ncpus=8:model=neh
to run all 8 cores on each of 16 Nehalem-EP nodes

#PBS -l select=11:ncpus=12:model=wes
to run all 12 cores on each of 11 Westmere-EP nodes
(4 cores in 11th node will go unused)

Note that you can specify both the queue type (-q normal, debug, long, wide, low)
and the processor type (-l model=har,neh,wes). For example:

#PBS -q normal
#PBS -l select=16:ncpus=8:model=neh

If your application can run on any of the three processor types, you may want to
submit your job to a processor type that has more unoccupied nodes by other
running jobs. This can possibly reduce the wait time of your job. The script

•

Resources Request Examples 138

node_stats.sh provides information about the total, used and free nodes for each
processor type. For example:

%/u/scicon/tools/bin/node_stats.sh

 Pleiades Nodes Total: 9394
 Pleiades Nodes Used : 8128
 Pleiades Nodes Free : 1266

 Harpertown Total: 5854 Used: 4878 Free: 976
 Nehalem Total: 1255 Used: 1036 Free: 219
 Westmere Total: 2285 Used: 2214 Free: 71

Currently queued jobs are requesting: 1463 Harpertown, 1767 Nehalem,
2860 Westmere nodes

Add "/u/scicon/tools/bin" to your PATH in .cshrc or other
shell start up scripts to avoid having to type in the complete
path for this tool.
You can also find for each job what processor models are used by looking at the
"Model" field of the output of the command:

%qstat -a -W o=+model

The Harpertown nodes in rack 32 have 16 GB memory/node instead of 8 GB/node.

Example 2:

This example shows a request of 2 nodes with bigmem in rack 32.

#PBS -l select=2:ncpus=8:bigmem=true:model=har

•

For a multi-node PBS job, the NCPUs used in each node can be different. This is
useful for jobs that need more memory for some processes, but less for other
processes. Resource requests can be done in "chunks" for a job with varying NCPUs
per node.

Example 3:

This example shows a request of two chunks of resources. In the first chunk, 1 CPU
in 1 node, and in the second chunk, 8 CPUs in each of three other nodes are
requested:

#PBS -l select=1:ncpus=1+3:ncpus=8

•

A PBS job can run across different processor types. This can be useful in two
scenarios:

•

Resources Request Examples 139

when you can not find enough free nodes within one model for your job1.
when some of your processes need more memory while others need much
less

2.

This can be accomplished by specifying the resources in "chunks", with one chunk
asking for one processor type while another chunk asking for a different processor
type.

Example 4

Here is an example to request 1 Westmere node (which provides 24 GB/node) and 3
Harpertown nodes (which provides 8 GB/node).

#PBS -lplace=scatter:excl:group=model
#PBS -lselect=1:ncpus=12:mpiprocs=12:model=wes+3:ncpus=8:mpiprocs=8:model=har

Resources Request Examples 140

Default Variables Set by PBS

DRAFT

This article is being reviewed for completeness and technical accuracy.

You can use the "env" command--either in a PBS script or on the command line of a PBS
interactive session--to find out what environment variables are set within a PBS job. In
addition to the PBS_xxxx variables, the following two are useful to know:

NCPUS defaults to number of CPUs that you requested for the node.•

OMP_NUM_THREADS defaults to 1 unless you explicitly set it to a different number.

If your PBS job runs an OpenMP or MPI/OpenMP application, this variable sets the
number of threads in the parallel region.

•

FORT_BUFFERED defaults to 1.

Setting this variable to 1 enables records to be accumulated in the buffer and flushed
to disk later.

•

Default Variables Set by PBS 141

http://www.nas.nasa.gov/kb/PBS-Environment-Variables_178.html

Sample PBS Script for Pleiades

DRAFT

This article is being reviewed for completeness and technical accuracy.

#PBS -S /bin/csh
#PBS -N cfd
This example uses the Harpertown nodes
User job can access ~7.6 GB of memory per Harpertown node.
A memory intensive job that needs more than ~0.9 GB
per process should use less than 8 cores per node
to allow more memory per MPI process. This example
asks for 64 nodes and 4 MPI processes per node.
This request implies 64x4 = 256 MPI processes for the job.
#PBS -l select=64:ncpus=8:mpiprocs=4:model=har
#PBS -l walltime=4:00:00
#PBS -j oe
#PBS -W group_list=a0801
#PBS -m e

Currently, there is no default compiler and MPI library set.
You should load in the version you want.
Currently, MVAPICH or SGI's MPT are available in 64-bit only,
you should use a 64-bit version of the compiler.

module load comp-intel/11.1.046
module load mpi-sgi/mpt.2.04.10789

By default, PBS executes your job from your home directory.
However, you can use the environment variable
PBS_O_WORKDIR to change to the directory where
you submitted your job.

cd $PBS_O_WORKDIR

use of dplace to pin processes to processors may improve performance
Here you request to pin processes to processors 2, 3, 6, 7 of each node.
This helps for using the Harpertown nodes, but not for Nehalem-EP or
Westmere-EP nodes

The resource request of select=64 and mpiprocs=4 implies
that you want to have 256 MPI processes in total.
If this is correct, you can omit the -np 256 for mpiexec
that you might have used before.

mpiexec dplace -s1 -c2,3,6,7 ./grinder < run_input > output

It is a good practice to write stderr and stdout to a file (ex: output)
Otherwise, they will be written to the PBS stderr and stdout in /PBS/spool,
which has limited amount of space. When /PBS/spool is filled up, any job
that tries to write to /PBS/spool will die.

Sample PBS Script for Pleiades 142

-end of script-

Sample PBS Script for Pleiades 143

Pleiades devel Queue

NAS provides a special devel queue that provides faster turnaround when doing
development work.

Currently, 512 Westmere nodes are reserved for the Pleiades devel queue, 24x7. The
maximum wall-time allowed is 2:00:00 and the maximum NCPUS is 4800. Each user is
allowed to have only one job running in the devel queue at any one time.

To improve PBS job scheduling response time, the devel queue and its resources (for
example, nodes) have been moved to a second PBS server (pbspl3). With this move, users
must specify the server name for jobs managed by pbspl3 with qsub, qstat, and qdel if the
command is launched from a Pleiades front-end node (pfe[1-12] or bridge[1-4]). For
example:

pfe1% qsub -q devel@pbspl3 job_script
1234.pbspl3.nas.nasa.gov

pfe1% qstat devel@pbspl3

pfe1% qstat -a @pbspl3

pfe1% qstat -u zsmith @pbspl3

pfe1% qstat 1234.pbspl3

pfe1% qdel 1234.pbspl3

Alternatively, if you set the environment variable PBS_DEFAULT to pbspl3, you can skip
pbspl3 in your qsub, qstat, qdel commands. For example (in csh):

pfe1% setenv PBS_DEFAULT pbspl3

pfe1% qsub -q devel job_script
1234.pbspl3.nas.nasa.gov

pfe1% qstat devel

pfe1% qstat -a

pfe1% qstat -u zsmith

pfe1% qstat 1234

pfe1% qdel 1234

Use the csh command unsetenv PBS_DEFAULT to return to using the default PBS server,
pbspl1.

Note that the changes described here do not apply to jobs submitted to the other queues
(normal, long, debug, and all special queues) served by the default server, pbspl1.

Pleiades devel Queue 144

To see all jobs you have submitted to pbspl1 or pbspl3 (using username zsmith in the
example below), type the following:

pfe1% qstat @pbspl1 @pbspl3 -W combine -u zsmith

Pleiades devel Queue 145

PBS on Columbia

Overview

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Columbia, PBS (version 9.2) is used to manage batch jobs that run on the four compute
systems (Columbia21-24). PBS features that are common to all NAS systems are
described in other articles. Read the following articles for Columbia-specific PBS
information:

queue structure•

resource request examples•
default variables set by PBS•
sample PBS scripts•

PBS on Columbia 146

http://www.nas.nasa.gov/kb/Queue-Structure_192.html
http://www.nas.nasa.gov/kb/Resources-Request-Examples_194.html
http://www.nas.nasa.gov/kb/Default-Variables-Set-by-PBS_195.html
http://www.nas.nasa.gov/kb/Sample-PBS-Script-for-Columbia_196.html

Resources Request Examples

DRAFT

This article is being reviewed for completeness and technical accuracy.

All of the Columbia compute engines, Columbia21-24, are single system image Altix 4700
systems:

Columbia21 (508 CPUs total, 1.8 GB memory/CPU through PBS)
Columbia22 (2044 CPUs total, 1.8 GB memory/CPU through PBS)
Columbia23 (1020 CPUs total, 1.8 GB memory/CPU through PBS)
Columbia23 (1020 CPUs total, 1.8 GB memory/CPU through PBS)

Here are a few examples of requesting resources on Columbia:

Example 1:

If your job needs fewer than 508 CPUs and you do not care which Columbia system to run
your job on, simply use ncpus to specify the number of CPUs that you want for your job. For
example:

#PBS -l ncpus=256
Example 2:

If you specify both the ncpus and mem for your job, PBS will make sure that your job is
allocated enough resources to satisfy both ncpus and mem. For example, if you request 4
CPUs and 14 GB of memory, your job will be allocated 8 CPUs and 14.4 GB because the
amount of memory associated with 4 CPUs is not enough to satisfy your memory request.

#PBS -l ncpus=4,mem=14GB
Example 3:

If you want your job to run on a specific Columbia machine, for example, Columbia22 with
256 CPUs, use

#PBS -l select=host=columbia22:ncpus=256

Note that the ncpus request must appear with the select=host request and must not be
present as a separate request either on the qsub command line or in the PBS script.
Example 4:

If you ever need to run a job across two Columbia systems, for example, 508 CPUs on one
Columbia and another 508 CPUs on another, use

#PBS -l select=2:ncpus=508,place=scatter

Resources Request Examples 147

Default Variables Set by PBS

DRAFT

This article is being reviewed for completeness and technical accuracy.

You can use the "env" command--either in a PBS script or from the command line of an
interactive PBS session--to find out what environment variables are set within a PBS job. In
addition to the PBS_xxxx variables, the following ones are useful to know.

NCPUS defaults to number of CPUs that you requested.•

OMP_NUM_THREADS defaults to 1 unless you explicitly set it to a different number.

If your PBS job runs an OpenMP or MPI/OpenMP application, this variable sets the
number of threads in the parallel region.

•

OMP_DYNAMIC defaults to false.

If your PBS job runs an OpenMP application, this disables dynamic adjustment of the
number of threads available for execution of parallel regions.

•

MPI_DSM_DISTRIBUTE defaults to true.

If your PBS job runs an MPI application, this ensures that each MPI process gets a
unique CPU and physical memory on the node with which that CPU ist is associated.

•

FORT_BUFFERED defaults to 1.

Setting this variable to 1 enables records to be accumulated in the buffer and flushed
to disk later.

•

Default Variables Set by PBS 148

http://www.nas.nasa.gov/kb/PBS-Environment-Variables_178.html

Sample PBS Script for Columbia

DRAFT

This article is being reviewed for completeness and technical accuracy.

#PBS -S /bin/csh
#PBS -N cfd
#PBS -l ncpus=4
#PBS -l mem=7776MB
#PBS -l walltime=4:00:00
#PBS -j oe
#PBS -W group_list=g12345
#PBS -m e

By default, PBS executes your job from your home directory.
However, you can use the environment variable
PBS_O_WORKDIR to change to the directory where
you submitted your job.

cd $PBS_O_WORKDIR

For MPI jobs, there is an SGI MPT module loaded by default, unless you
modify your shell start up script to unload it or switch to a different
version. You can use either mpiexec or mpirun to start your job.

mpiexec -np 4 ./a.out < input > output

It is a good practice to write stderr and stdout to a file (ex: output)
Otherwise, they will be written to the PBS stderr and stdout in /PBS/spool
which has limited amount of space. When /PBS/spool is filled up, any job
that tries to write to /PBS/spool will die.

-end of script-

Sample PBS Script for Columbia 149

Troubleshooting PBS Jobs

Common Reasons for Being Unable to Submit Jobs

DRAFT

This article is being reviewed for completeness and technical accuracy.

There are several common reasons why you might not be able to successfully submit a job
to PBS:

Resource request exceeds resource limits

qsub: Job exceeds queue resource limits

Reduce your resource request to below the limit or use a different queue.

•

AUID or GID not authorized to use a specific queue

If you get the following message after submitting a PBS job:

qsub: Unauthorized Request

it is possible that you tried submitting to a queue which is accessible only to certain
groups or users. You can check the "qstat -fQ" output and see if there is an
acl_groups or a acl_users list. If your group or username is not in the lists, you will
have to submit to a different queue."

•

AUID not authorized to use a specific GID

If you get the following message after submitting a PBS job:

qsub: Bad GID for job execution

it is possible that your AUID has not been added to use allocations under a specific
GID. Please consult with the principal investigator of that GID and ask him/her to
submit a request to support@nas.nasa.gov to add your AUID under that GID.

•

Queue is disabled

If you get the following message after submitting a PBS job

qsub: Queue is not enabled

you should submit to a different queue which is enabled.

•

Not enough allocation left•

Troubleshooting PBS Jobs 150

An automated script is used to check if a GID is over its allocation everyday. If it
does, that GID is removed from PBS access control list and users of that GID will not
be able to submit jobs.

Users can check the amount of allocations remaining using the acct_ytd command.
In addition, if you see in your PBS output file some message regarding your GID
allocation usage is near its limit or is already over, ask your PI to request for more
allocation.

Common Reasons for Being Unable to Submit Jobs 151

Common Reasons Why Jobs Won't Start

Once you've successfully submitted your job, there may be several common reasons why it
might not run:

The job is waiting for resources

Your job may be waiting for resources, due to one of the following:

All resources are tied up with running jobs, and no other jobs can be started.
♦

PBS may have enough resources to run your job, however, there is another
higher priority job that needs more resources than what is available, and PBS
is draining the system (including not running any new jobs) in order to
accommodate the high-priority job.

♦

Some users submit too many jobs at once (e.g., more than 100), and the PBS
scheduler becomes swamped with sorting jobs and is not able to start jobs
effectively.

♦

In the case when you request your job to run on a specific node or group of
nodes, your job is likely to wait in the queue longer than if you do not request
specific nodes.

♦

•

Your mission share has run out

Your mission shares have been used up. The available resources that you saw
belong to other missions, which can be borrowed. However, your job may have
requested a wall-time that is too long (more than 4 hours for Pleiades), which
prevents your job from borrowing the resources.

See also, Mission Shares Policy on Pleiades.

•

The system is going into dedicated time

When dedicated time (DED) is scheduled for hardware and/or software work, the
PBS scheduler will not start a job if the projected end time runs past the beginning of
the DED time. If you are able to reduce the requested wall-time so that your job will
finish running prior to DED time, then your job can then be considered for running.
To change the wall-time request for your job, follow the example below :

%qalter -l walltime=hh:mm:ss jobid

•

Scheduling is turned off

Sometimes job scheduling is turned off by control room staff or a system
administrator. This is usually done when there are system or PBS issues that need
to be resolved before jobs can be scheduled to run. When this happens, you should
see the following message near the beginning of the "qstat -au your_userid" output.

+++Scheduling turned off.

•

Your job has been placed in "H" mode•

Common Reasons Why Jobs Won't Start 152

A job can be placed on hold either by the job owner or by someone who has root
privilege, such as a system administrator. If your job has been placed on hold by a
system administrator, you should get an email explaining the reason for the hold.
Your home filesystem or default /nobackup filesystem is down

When a PBS job starts, the PBS prologue checks to determine whether your home
filesystem and default /nobackup are available before executing the commands in
your script. If your default /nobackup filesystem is down, PBS can not run your job
and it will put the job back in the queue. If your PBS job does not need any file in that
filesystem, you can tell PBS that your job will not use the default /nobackup so that
your job can start running. For example, if your default is /nobackupp10 (for
Pleiades), you can add the following in your PBS script:

#PBS -l /nobackupp10=0

•

Common Reasons Why Jobs Won't Start 153

Using pdsh_gdb for Debugging Pleiades PBS Jobs

DRAFT

This article is being reviewed for completeness and technical accuracy.

A script called pdsh_gdb, created by NAS staff Steve Heistand, is available on Pleiades
under /u/scicon/tools/bin for debugging PBS jobs while the job is running.

Launching this script from a Pleiades front-end node allows one to connect to each
compute node of a PBS job and create a stack trace of each process. The aggregated
stack trace from each process will be written to a user specified directory (by default, it is
written to ~/tmp).

Here is an example of how to use this script:

pfe1% mkdir tmp
pfe1% /u/scicon/tools/bin/pdsh_gdb -j jobid -d tmp -s -u nas_username

More usage information can be found by launching pdsh_gdb without any option:

pfe1% /u/scicon/tools/bin/pdsh_gdb

Using pdsh_gdb for Debugging Pleiades PBS Jobs 154

Effective Use of PBS

Streamlining File Transfers from Pleiades Compute Nodes to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the outside
world, all file transfers to Lou within a PBS job must go through the front-ends (pfe[1-12],
bridge[1,2]) first.

Here is an example of what you can add to your PBS script to accomplish this:

Ssh to a front-end node (for example, bridge2) and create a directory on Lou where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via bridge[1,2] to transfer the files.2.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

Effective Use of PBS 155

Avoiding Job Failure from Overfilling /PBS/spool

Before a PBS job is completed, its error and output files are kept in the /PBS/spool directory
of the first node of your PBS job. The space under /PBS/spool is limited, however, and
when it fills up, any job that tries to write to /PBS/spool may die. To prevent this, you should
not write large amount of contents in the PBS output/error files.

If your executable normally produces a lot of output to the screen, you should redirect its
output in your PBS script. For example:

#PBS ...
mpiexec a.out > output

To see the contents of your PBS output/error files before your job completes, follow the two
steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1.

%qstat -u your_username -W o=+rank0
JobID User Queue Jobname TSK Nds wallt S wallt Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long ABC 512 64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the content of these files using vi or view.

2.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800 1234236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.ER

Avoiding Job Failure from Overfilling /PBS/spool 156

Running Multiple Serial Jobs to Reduce Walltime

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Pleiades, running multiple serial jobs within a single batch job can be accomplished with
following example PBS scripts. The maximum number of processes you can run on a single
node will be limited to the core-count-per-node or the maximum number that will fit in a
given node's memory, whichever is smaller.

processor type cores/node available memory/node
 Harpertown 8 7.6 GB
 Nehalem-EP 8 22.5 GB
 Westmere-EP 12 22.5 GB

The examples below allow you to spawn serial jobs accross nodes using the mpiexec
command. Note that a special version of mpiexec from the mpi-mvapich2/1.4.1/intel module
is needed in order for this to work. This mpiexec keeps track of $PBS_NODEFILE and
places each serial job onto the CPUs listed in $PBS_NODEFILE properly. The use of the
arguments "-comm none" for this version of mpiexec is essential for serial codes or scripts.
In addition, to launch multiple copies of the serial job at once, the use of the
mpiexec-supplied $MPIEXEC_RANK environment variable is needed to distinguish
different input/output files for each serial job. This is demonstrated with the use of a
wrapper script "wrapper.csh" in which the input/output identifier (i.e., ${rank}) is calculated
from the sum of $MPIEXEC_RANK and an argument provided as input by the user.

Example 1:

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh:

#!/bin/csh -f

Running Multiple Serial Jobs to Reduce Walltime 157

@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and that they
are all located in the directory where the PBS script is submitted from (i.e.,
$PBS_O_WORKDIR). If the input files are in different directories, then wrapper.csh can be
modified appropriately to cd into different directories as long as the directory names are
differentiated by a single number that can be obtained from $MPIEXEC_RANK (=0, 1, 2, 3,
...). In addition, be sure that wrapper.csh is executable by you and you have the current
directory included in your path.

Example 2:

A second example provides the flexibility where the total number of serial jobs may not be
the same as the total number of CPUs requested in a PBS job. Thus, the serial jobs are
divided into a few batches and the batches are processed sequentially. Again, the wrapper
script is used where multiple versions of the program "a.out" in a batch are run in parallel.

serial2.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

the total number to run at once is automatically determined
at runtime by the number of cpus available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. no changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

Running Multiple Serial Jobs to Reduce Walltime 158

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Running Multiple Serial Jobs to Reduce Walltime 159

Checking the Time Remaining in a PBS Job from a Fortran Code

DRAFT

This article is being reviewed for completeness and technical accuracy.

During job execution, sometimes it is useful to find out the amount of time remaining for
your PBS job. This allows you to decide if you want to gracefully dump restart files and exit
before PBS kills the job.

If you have an MPI code, you can call MPI_WTIME and see if the elapsed walltime has
exceeded some threshold to decide if the code should go into the shutdown phase.

For example,

 include "mpif.h"

 real (kind=8) :: begin_time, end_time

 begin_time=MPI_WTIME()
 do work
 end_time = MPI_WTIME()

 if (end_time - begin_time > XXXXX) then
 go to shutdown
 endif

In addition, the following library has been made available on Pleiades for the same
purpose:

/u/scicon/tools/lib/pbs_time_left.a

To use this library in your Fortran code, you need to:

Modify your Fortran code to define an external subroutine and an integer*8 variable

 external pbs_time_left
 integer*8 seconds_left

1.

Call the subroutine in the relevant code segment where you want the check to be
performed

 call pbs_time_left(seconds_left)
 print*,"Seconds remaining in PBS job:",seconds_left

 The return value from pbs_time_left is only accurate to within a minute or two.

2.

Checking the Time Remaining in a PBS Job from a Fortran Code 160

Compile your modified code and link with the above library using, for example

LDFLAGS=/u/scicon/tools/lib/pbs_time_left.a

3.

Checking the Time Remaining in a PBS Job from a Fortran Code 161

Best Practices

Streamlining File Transfers from Pleiades Compute Nodes
to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the outside
world, all file transfers to Lou within a PBS job must go through the front-ends (pfe[1-12],
bridge[1,2]) first.

Here is an example of what you can add to your PBS script to accomplish this:

Ssh to a front-end node (for example, bridge2) and create a directory on Lou where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via bridge[1,2] to transfer the files.2.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

Best Practices 162

Increasing File Transfer Rates

One challenge users face is moving large amounts of data efficiently to/from NAS across
the network. Often, minor system, software, or network configuration changes can increase
network performance an order of magnitude or more. This article describes some methods
for increasing data transfer performance.

If you are experiencing slow transfer rates, try these quick tips:

Transfer using the bridge nodes (bridge1, bridge2) instead of the Pleiades front-end
systems (PFEs). The bridge nodes have much more memory, along with 10-Gigabit
Ethernet interfaces to accommodate many large transfers. The PFEs often become
oversubscribed and cause slowness.

•

If using the scp command, make sure you are using OpenSSH version 5 or later.
Older versions of SSH have a hard limit on transfer rates and are not designed for
WAN transfers. You can check your version of SSH by running the command ssh -V.

•

For large files that are a gigabyte or larger, we recommend using BBFTP. This
application allows for transferring simultaneous streams of data and doesn't have the
overhead of encrypting all the data (authentication is still encrypted).

•

Online Network Testing Tools

The NAS PerfSONAR Service provides a custom website that that allows you to quickly
self-diagnose your remote network connection issues, and reports the maximum bandwidth
between sites, as well as any problems in the network path. Command-line tools are
available if your system does not have a web browser.

Test results are also sent to our network experts, who will analyze traffic flows, identify
problems, and work to resolve any bottlenecks that limit your network performance, whether
the problem is at NAS or a remote site.

One-on-One Help

If you still require assistance in increasing your file transfer rates, please contact the NAS
Control Room at support@nas.nasa.gov, and a network expert will work with you or your
local administrator one-on-one to identify methods for increasing your rates.

To learn about other network-related support areas. see also, End-to-End Networking
Services.

Increasing File Transfer Rates 163

http://npad.nas.nasa.gov/
mailto:support@nas.nasa.gov
http://www.nas.nasa.gov/hecc/services/networking_service.html
http://www.nas.nasa.gov/hecc/services/networking_service.html

Effective Use of Resources with PBS

Streamlining File Transfers from Pleiades Compute Nodes to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the outside
world, all file transfers to Lou within a PBS job must go through the front-ends (pfe[1-12],
bridge[1,2]) first.

Here is an example of what you can add to your PBS script to accomplish this:

Ssh to a front-end node (for example, bridge2) and create a directory on Lou where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via bridge[1,2] to transfer the files.2.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

Effective Use of Resources with PBS 164

Avoiding Job Failure from Overfilling /PBS/spool

Before a PBS job is completed, its error and output files are kept in the /PBS/spool directory
of the first node of your PBS job. The space under /PBS/spool is limited, however, and
when it fills up, any job that tries to write to /PBS/spool may die. To prevent this, you should
not write large amount of contents in the PBS output/error files.

If your executable normally produces a lot of output to the screen, you should redirect its
output in your PBS script. For example:

#PBS ...
mpiexec a.out > output

To see the contents of your PBS output/error files before your job completes, follow the two
steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1.

%qstat -u your_username -W o=+rank0
JobID User Queue Jobname TSK Nds wallt S wallt Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long ABC 512 64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the content of these files using vi or view.

2.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800 1234236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.ER

Avoiding Job Failure from Overfilling /PBS/spool 165

Running Multiple Serial Jobs to Reduce Walltime

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Pleiades, running multiple serial jobs within a single batch job can be accomplished with
following example PBS scripts. The maximum number of processes you can run on a single
node will be limited to the core-count-per-node or the maximum number that will fit in a
given node's memory, whichever is smaller.

processor type cores/node available memory/node
 Harpertown 8 7.6 GB
 Nehalem-EP 8 22.5 GB
 Westmere-EP 12 22.5 GB

The examples below allow you to spawn serial jobs accross nodes using the mpiexec
command. Note that a special version of mpiexec from the mpi-mvapich2/1.4.1/intel module
is needed in order for this to work. This mpiexec keeps track of $PBS_NODEFILE and
places each serial job onto the CPUs listed in $PBS_NODEFILE properly. The use of the
arguments "-comm none" for this version of mpiexec is essential for serial codes or scripts.
In addition, to launch multiple copies of the serial job at once, the use of the
mpiexec-supplied $MPIEXEC_RANK environment variable is needed to distinguish
different input/output files for each serial job. This is demonstrated with the use of a
wrapper script "wrapper.csh" in which the input/output identifier (i.e., ${rank}) is calculated
from the sum of $MPIEXEC_RANK and an argument provided as input by the user.

Example 1:

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh:

#!/bin/csh -f

Running Multiple Serial Jobs to Reduce Walltime 166

@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and that they
are all located in the directory where the PBS script is submitted from (i.e.,
$PBS_O_WORKDIR). If the input files are in different directories, then wrapper.csh can be
modified appropriately to cd into different directories as long as the directory names are
differentiated by a single number that can be obtained from $MPIEXEC_RANK (=0, 1, 2, 3,
...). In addition, be sure that wrapper.csh is executable by you and you have the current
directory included in your path.

Example 2:

A second example provides the flexibility where the total number of serial jobs may not be
the same as the total number of CPUs requested in a PBS job. Thus, the serial jobs are
divided into a few batches and the batches are processed sequentially. Again, the wrapper
script is used where multiple versions of the program "a.out" in a batch are run in parallel.

serial2.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

the total number to run at once is automatically determined
at runtime by the number of cpus available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. no changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

Running Multiple Serial Jobs to Reduce Walltime 167

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Running Multiple Serial Jobs to Reduce Walltime 168

Checking the Time Remaining in a PBS Job from a Fortran Code

DRAFT

This article is being reviewed for completeness and technical accuracy.

During job execution, sometimes it is useful to find out the amount of time remaining for
your PBS job. This allows you to decide if you want to gracefully dump restart files and exit
before PBS kills the job.

If you have an MPI code, you can call MPI_WTIME and see if the elapsed walltime has
exceeded some threshold to decide if the code should go into the shutdown phase.

For example,

 include "mpif.h"

 real (kind=8) :: begin_time, end_time

 begin_time=MPI_WTIME()
 do work
 end_time = MPI_WTIME()

 if (end_time - begin_time > XXXXX) then
 go to shutdown
 endif

In addition, the following library has been made available on Pleiades for the same
purpose:

/u/scicon/tools/lib/pbs_time_left.a

To use this library in your Fortran code, you need to:

Modify your Fortran code to define an external subroutine and an integer*8 variable

 external pbs_time_left
 integer*8 seconds_left

1.

Call the subroutine in the relevant code segment where you want the check to be
performed

 call pbs_time_left(seconds_left)
 print*,"Seconds remaining in PBS job:",seconds_left

 The return value from pbs_time_left is only accurate to within a minute or two.

2.

Checking the Time Remaining in a PBS Job from a Fortran Code 169

Compile your modified code and link with the above library using, for example

LDFLAGS=/u/scicon/tools/lib/pbs_time_left.a

3.

Checking the Time Remaining in a PBS Job from a Fortran Code 170

Memory Usage on Pleiades

Memory Usage Overview

Running jobs on cluster systems such as Pleiades requires more attention to the memory
usage of a job than on shared memory systems. Below are a few factors that limit the
amount of memory available to your running job:

The total physical memory of a Pleiades compute node varies from 8 GB to 24 GB. A
small amount of the physical memory is used by the system kernel. Through PBS, a
job can access up to about 7.6 GB of an 8-GB node (Harpertown) and about 22.5
GB of a 24-GB node (Nehalem-EP and Westmere-EP).

•

The PBS prologue tries to clean up the memory used by the previous job that ran on
the nodes of your current running job. If there is a delay in flushing the previous job's
data from memory to disks (for example, due to Lustre issues), the actual amount of
free memory available to your job will be less.

•

I/O uses buffer cache that also occupies memory. If your job does a large amount of
I/O, the amount of memory left for your running processes will be less.

•

If your job uses more than 1 node, beware that the memory usage reported in the PBS
output file is not the total memory usage for your job: rather, it is the memory used in the
first node of your job. To help you get a more accurate picture of the memory usage of your
job, we provide a few in-house tools, listed below.

qtop.pl invokes top on the compute nodes of a job, and provides a snapshot of the
amount of used and free memory of the whole node and the amount used by each
running process. For more information, read the article Checking Memory Usage of a
Batch Job Using qtop.pl.

1.

qps invokes ps on the compute nodes of a job, and provides a snapshot of the
%mem used by its running processes. For more information, read the article
Checking Memory Usage of a Batch Job Using qps.

2.

qsh.pl can be used to invoke the command cat /proc/meminfo on the compute
nodes to provide a snapshot of the total and free memory in each node. For more
information, read the article Checking Memory Usage of a Batch Job Using qsh.pl
and "cat /proc/meminfo".

3.

gm.x and gm_post.x provide the memory high water mark for each process of your
job when the job finishes. For more information, read the article Checking Memory
Usage of a Batch Job Using qm.x.

4.

Memory Usage on Pleiades 171

These tools are installed under the directory /u/scicon/tools/bin. It is a good idea to include
this directory in your path by modifying your shell startup script so that you don't have to
provide the complete path name when using these tools. For example:

set path = ($path /u/scicon/tools/bin)

If your job runs out of memory and is killed by the kernel, this event was probably recorded
in system log files. Instructions on how to check whether this is the case are provided in the
article Checking if a Job was Killed by the OOM Killer.

If your job needs more memory, read the article How to Get More Memory for your Job for
possible approaches.

Memory Usage Overview 172

Checking memory usage of a batch job using qps

User Jeff West provided us with a Perl script called qps (available under /u/scicon/tools/bin)
that securely connects (via ssh) into each node of a running job and gets process status
(ps) information on each node.

Syntax:

pfe1% qps jobid
Example:

pfe1% qps 26130

*** Job 26130, User abc, Procs 1
NODE TIME %MEM %CPU STAT TASK
r1i0n14 10:17:13 2.8 99.9 RL ./a.out
r1i0n14 10:17:12 2.9 99.9 RL ./a.out
r1i0n14 10:17:18 2.9 99.9 RL ./a.out
r1i0n14 10:16:34 2.9 99.8 RL ./a.out
r1i0n14 10:17:11 2.9 99.9 RL ./a.out
r1i0n14 10:17:13 2.9 99.9 RL ./a.out
r1i0n14 10:17:12 2.9 99.9 RL ./a.out
r1i0n14 10:17:15 2.9 99.9 RL ./a.out

Note: The % memory usage by a process reported by this script is the percentage of
memory in the whole node. This script currently works only when users specify ncpus=8 in
the PBS resource request.

If you want to use qps to monitor the memory used by a job that requested a number of
CPUs other than 8, then make a copy of the qps script and change that single occurrence
of '8' on line 95 to the appropriate number of CPUs requested on each node.

Checking memory usage of a batch job using qps 173

Checking memory usage pf a batch job using qtop.pl

DRAFT

This article is being reviewed for completeness and technical accuracy.

A Perl script called qtop.pl (available under /u/scicon/tools/bin) was provided by Bob Hood
of the NAS staff. This script ssh's into the nodes of a PBS job and performs the command
top. The output of qtop.pl provides memory usage for the whole node and for each process.

Syntax:

pfe1% qtop.pl [-b] [-p n] [-P s] [-h n] [-H s] [-t s] [-N s] PBSjobid
 -b : (for running in background or batch) don't run 'resize' command
 -p n : show at most n processes per host
 -P s : show only procs in s, a comma-separated list of ranges
 e.g. -P 1,8-9
 -h : don't show the column header line
 -H s : show only header lines in s, comma-separated ranges
 e.g. -H 1-2,7
 e.g. -H 0 (don't show any lines)
 -t s : pass string s (must be one argument) to top command
 -n s : show output only from nodes in s, comma-separated ranges
 e.g. -n 0,2-3 (relative node #'s)
 -N s : show output only from nodes in s, a comma-separated list
 e.g. -N r1i1n14,r1i1n15 (absolute node #'s)

Example: to skip the header and list 8 procs per host

pfe1% qtop.pl -H 0 -p 8 996093
all nodes in job 996093: r184i2n12
r184i2n12 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 20027 zsmith 25 0 23.8g 148m 5320 R 101 0.6 5172:37 a.out
 20028 zsmith 25 0 23.8g 140m 5140 R 101 0.6 5173:35 a.out
 20029 zsmith 25 0 23.9g 286m 6640 R 101 1.2 5172:23 a.out
 20030 zsmith 25 0 23.9g 245m 5040 R 101 1.0 5171:18 a.out
 20031 zsmith 25 0 23.9g 265m 6040 R 101 1.1 5171:46 a.out
 20032 zsmith 25 0 23.9g 246m 5300 R 101 1.0 5171:00 a.out
 20033 zsmith 25 0 23.8g 158m 5476 R 101 0.7 5172:41 a.out
 20034 zsmith 25 0 23.8g 148m 5280 R 101 0.6 5173:02 a.out

Checking memory usage pf a batch job using qtop.pl 174

Checking memory usage of a batch job using qsh.pl and "cat
/proc/meminfo"

DRAFT

This article is being reviewed for completeness and technical accuracy.

A Perl script called qsh.pl (available under /u/scicon/tools/bin) was provided by NAS staff
member Bob Hood. This script ssh's into all the nodes used by a PBS job and runs a
command that you supply.

Syntax:

pfe1% qsh.pl pbs_jobid command

One good use of this script is to check the amount of free memory in the nodes of your PBS
job.

Example:

pfe1% qsh.pl 30329 "cat /proc/meminfo"

running "cat /proc/meminfo" on: r56i2n14 r56i2n15
r56i2n14 :
 MemTotal: 8079728 kB
 MemFree: 857936 kB
 Buffers: 0 kB
 Cached: 3775472 kB
...
r56i2n15 :
 MemTotal: 8079728 kB
 MemFree: 5840920 kB
 Buffers: 0 kB
 Cached: 784280 kB
...

Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo" 175

Checking memory usage of a batch job using gm.x

DRAFT

This article is being reviewed for completeness and technical accuracy.

NAS staff member Henry Jin created a tool called gm.x (available under /u/scicon/tools/bin)
that reports the memory usage at the end of a run from each process.

Add /u/scicon/tools/bin to your $PATH so that you can invoke gm.x without the full path.

Use the -h option to find out what types of memory usage can be reported:

pfe1%gm.x -h
gm - version 1.0
usage: gm.x [-opts] a.out [args]
 -hwm ; high water mark (VmHWM)
 -rss ; resident memory size (VmRSS)
 -wrss ; weighted memory size (WRSS)
 -v ; verbose flag
Default is by environment variable GM_TYPE (def=WRSS)

Note that the -rss option reports the last snapshot of resident set size usage captured by
the kernel. With the -wrss option, gm.x calls the system function
get_weighted_memory_size. More information about this function can be found from the
man page man get_weighted_memory_size.

gm.x can be used for either OpenMP or MPI applications (linked with either SGI's MPT,
MVAPICH or Intel MPI libraries) and you do not have to recompile your application for it. A
script called gm_post.x then takes the per process memory usage information and
computes the total memory used and the average memory used per process.

To use gm.x for an MPI code, add gm.x after the mpiexec options. For example:

mpiexec -np 4 gm.x ./a.out
Memory usage for (r1i1n0,pid=9767): 1.458 MB (rank=0)
Memory usage for (r1i1n0,pid=9768): 1.413 MB (rank=1)
Memory usage for (r1i1n0,pid=9770): 1.413 MB (rank=3)
Memory usage for (r1i1n0,pid=9769): 1.417 MB (rank=2)

mpiexec -np 4 gm.x ./a.out | gm_post.x
Number of nodes = 1
Number of processes = 4
Processes per node = 4
Total memory = 5.701 MB

Memory per node = 5.701 MB
Minimum node memory = 5.701 MB

Checking memory usage of a batch job using gm.x 176

Maximum node memory = 5.701 MB

Memory per process = 1.425 MB
Minimum proc memory = 1.413 MB
Maximum proc memory = 1.458 MB

If you use dplace to pin process, add gm.x after dplace:

mpiexec -np NN dplace -s1 gm.x ./a.out

Checking memory usage of a batch job using gm.x 177

Checking if a Job was Killed by the OOM Killer

If a PBS job runs out of memory and is killed by the Out-Of-Memory (OOM) killer of the
kernel, this event is likely (though not always) recorded in system log files. You can confirm
this event by checking some of the messages recorded in system log files, and then
increase your memory request in order to get your job running.

Follow the steps below to check whether your job has been killed by the OOM killer:

Find out when your job ran, what rack numbers were used by your job, and if the job
exited with the Exit_status=137 from the tracejob output of your job. For example:

pfe[1-12]% ssh pbspl1
pbspl1% tracejob -n 3 140001

where "3" indicates that you want to trace your job (PBS JOBID=140001), which ran
within the past 3 days.

1.

From the rack numbers (such as r2, r3, ...), you then grep messages that were
recorded in the messages file stored in the leader node of those racks for your
executable. For example, to look at messages for rack r2:

pfe[1-12]% grep abc.exe /net/r2lead/var/log/messages
Apr 21 00:32:50 r2i2n7 kernel: abc.exe invoked oom-killer:
gfp_mask=0x201d2, order=0, oomkilladj=-17

2.

Often, the Out-Of-Memory message doesn't make it into the messages file, but will
be recorded in a consoles file named by each individual node. For example, to look
for abc.exe invoking the OOM killer on node r2i2n7:

3.

pfe% grep abc.exe /net/r2lead/var/log/consoles/r2i2n7
abc.exe invoked oom-killer: gfp_mask=0x201d2, order=0, oomkilladj=0

Note that these messages do not have a timestamp associated with them, so you
will need to use an editor to view the file and look for the hourly time markers
bracketing when the job ran out of memory. An hourly time marker looks like this:

[-- MARK -- Thu Apr 21 00:00:00 2011]

It's also possible that a system process (such as, pbs_mom or ntpd) is listed as invoking
the OOM killer, but it is nevertheless direct evidence that the node had run out of memory.

Checking if a Job was Killed by the OOM Killer 178

If you want to monitor the memory use of your job while it is running, you can use the tools
listed in the article Memory Usage Overview.

In addition, NAS provides a script called pbs_oom_check. This script does the steps above
and parses the /var/log/messages on all the nodes associated with pbs_jobid, looking for an
instance of OOM killer. The script is available under /u/scicon/tools/bin and works best
when run on the host pbspl1.

Checking if a Job was Killed by the OOM Killer 179

http://www.nas.nasa.gov/hecc/support/kb/entry/216/

How to get more memory for your job

DRAFT

This article is being reviewed for completeness and technical accuracy.

If your job was terminated because it needed more memory than what's available in the
nodes that it ran on, consider the following:

Among the Harpertown nodes, the 64 nodes in rack 32 have 16 GB per node instead
of 8 GB per node. You can request running your job on rack 32 with the keyword
bigmem=true. For example, change

#PBS -lselect=1:ncpus=8

to

#PBS -lselect=1:ncpus=8:bigmem=true

•

Run your job on Nehalem-EP or Westmere nodes instead of Harpertown nodes. For
example, change

#PBS -lselect=1:ncpus=8:model=har

to

#PBS -lselect=1:ncpus=8:model=neh

or

#PBS -lselect=1:ncpus=8:model=wes

•

If all processes use about the same amount of memory and you can not fit 8
processes per node (for Harpertown or Nehalem-EP, or 12 processes per node for
Westmere-EP), reduce the number of processes per node and request more nodes
for your job. For example, change

#PBS -lselect=3:ncpus=8:mpiprocs=8:model=neh

to

#PBS -lselect=6:ncpus=4:mpiprocs=4:model=neh

•

For a typical MPI job where rank 0 does the I/O and uses a lot of buffer cache,
assign rank 0 to 1 node by itself. For example, change

•

How to get more memory for your job 180

#PBS -lselect=1:ncpus=8:mpiprocs=8:model=neh

to

#PBS
-lselect=1:ncpus=1:mpiprocs=1:model=neh+1:ncpus=7:mpiprocs=7:model=neh

Due to formatting issue, the above may appear as 2 lines. It should
really be just 1 line.

If you suspect that certain nodes that your job ran on had less total physical memory
than normal, report it to NAS Help Desk. Those nodes can be offlined and taken care
of by NAS staff. This prevents you and other users from using those nodes before
they are fixed.

•

For certain pre- or post-processing work that needs more than 22.5 GB of memory,
run it on the bridge nodes (bridge[1,2]) interactively. Note that jobs running on the
bridge nodes can not use more than 48 GB of memory. Also MPI applications that
use SGI's MPT library can not run on the bridge nodes.

•

For a multi-process or multi-thread job, if any of your processes/threads needs more
than 22.5 GB, it won't run on Pleiades. Run it on a shared memory system such as
Columbia.

•

How to get more memory for your job 181

Lustre on Pleiades

Lustre Basics

DRAFT

This article is being reviewed for completeness and technical accuracy.

A Lustre filesystem is a high-performance, shared filesystem (managed with the Lustre
software) for Linux clusters. It is highly scalable and can support many thousands of client
nodes, petabytes of storage and hundreds of gigabytes per second of I/O throughput.

Main Lustre components:

Metadata Server (MDS)

1 or 2 per filesystem; service nodes that manage all metadata operations such as
assigning and tracking the names and storage locations of directories and files on
the OSTs.

•

Metadata Target (MDT)

1 per filesystem; a storage device where the metadata (name, ownership,
permissions and file type) are stored.

•

Object Storage Server (OSS)

1 or multiple per filesystem; service nodes that run the Lustre software stack, provide
the actual I/O service and network request handling for the OSTs, and coordinate file
locking with the MDS. Each OSS can serve up to ~15 OSTs. The aggregate
bandwidth of a Lustre filesystem can approach the sum of bandwidths provided by
the OSSes.

•

Object Storage Target (OST)

multiple per filesystem; storage devices where the data in user files are stored.
Under Linux 2.6 (current OS on Pleiades), each OST can be up to 8TB in size.
Under SLES 11, each OST can be up to 16 GB in size. The capacity of a Lustre
filesystem is the sum of the sizes of all OSTs.

•

Lustre Clients

commonly in the thousands per filesystem; compute nodes that mount the Lustre
filesystem, and access/use data in the filesystem.

•

Striping

Lustre on Pleiades 182

A user file can be divided into multiple chunks and stored across a subset of the OSTs. The
chunks are distributed among the OSTs in a round-robin fashion to ensure load balancing.

Benefits of striping:

allows one to have a file size larger than the size of an OST•

allows one or more clients to read/write different parts of the same file at the same
time and provide higher I/O bandwidth to the file since the bandwidth is aggregated
over the multiple OSTs

•

Drawbacks of striping:

higher risk of file damage due to hardware malfunction•

increased overhead due to network operations and server contention•

There are default stripe configurations for each Lustre filesystem. However, users can set
the following stripe parameters for their own directories or files to get optimum I/O
performance:

stripe_size

the size of the chunk in bytes; specify with k, m, or g to use units of KB, MB, or GB,
respectively; the size must be an even multiple of 65,536 bytes; default is 4MB for all
Pleiades Lustre filesystems; one can specify 0 to use the default size.

1.

stripe_count

the number of OSTs to stripe across; default is 1 for most of Pleiades Lustre
filesystems (/nobackupp[10-60]); one can specify 0 to use the default count; one can
specify -1 to use all OSTs in the filesystem.

2.

stripe_offset

The index of the OST where the first stripe is to be placed; default is -1 which results
in random selection; using a non-default value is NOT recommended.

3.

Use the command for setting the stripe parameters:

pfe1% lfs setstripe -s stripe_size -c stripe_count -o stripe_offset
dir|filename

For example, to create a directory called dir1 with a stripe_size of 4MB and a stripe_count
of 8, do

pfe1% mkdir dir1

Lustre Basics 183

pfe1% lfs setstripe -s 4m -c 8 dir1

Also keep in mind that:

When a file or directory is created, it will inherit the parent directory's stripe settings.•

The stripe settings of an existing file can not be changed. If you want to change the
settings of a file, you can create a new file with the desired settings and copy the
existing file to the newly created file.

•

Useful Commands for Lustre

To list all the OSTs for the filesystem

pfe1% lfs osts

•

To list space usage per OST and MDT in human readable format for all Lustre
filesystems or for a specific one, for example, /nobackupp10:
pfe1% lfs df -h
pfe1% lfs df -h /nobackupp10

•

To list inode usage for all filesystems or a specific one, for example, /nobackupp10:
pfe1% df -i
pfe1% df -i /nobackupp10

•

To create a new (empty) file or set directory default with specified stripe parameters

pfe1% lfs setstripe -s stripe_size -c stripe_count -o
stripe_offset dir|filename

•

To list the striping information for a given file or directory

pfe1% lfs getstripe dir|filename

•

To display disk usage and limits on your /nobackup directory (for example,
/nobackupp10):

pfe1% lfs quota -u username /nobackupp10

or

pfe1% lfs quota -u username /nobackup/username

To display usage on each OST, add the -v option:

pfe1% lfs quota -v -u username /nobackup/username

•

Lustre Basics 184

Pleiades Lustre Filesystems

Pleiades has several Lustre filesystems (/nobackupp[10-60]) that provide a total of about 3
PB of storage and serve thousands of cores. These filesystems are managed under Lustre
software version 1.8.2.

Lustre filesystem configurations are summarized at the end of this article.

Which /nobackup should I use?

Once you are granted an account on Pleiades, you will be assigned to use one of the
Lustre filesystems. You can find out which Lustre filesystem you have been assigned to by
doing the following:

pfe1% ls -l /nobackup/your_username
lrwxrwxrwx 1 root root 19 Feb 23 2010 /nobackup/username -> /nobackupp30/username

In the above example, the user is assigned to /nobackupp30 and a symlink is created to
point the user's default /nobackup to /nobackupp30.

TIP: Each Pleiades Lustre filesystem is shared among many users. To get good I/O
performance for your applications and avoid impeding I/O operations of other users, read
the articles: Lustre Basics and Lustre Best Practices.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the /nobackup filesystems. The default soft
and hard limits for inodes are 75,000 and 100,000, respectively. Those for the disk space
are 200GB and 400GB, respectively. To check your disk space and inodes usage and
quota on your /nobackup, use the lfs command and type the following:

%lfs quota -u username /nobackup/username
Disk quotas for user username (uid xxxx):
 Filesystem kbytes quota limit grace files quota limit grace
/nobackup/username 1234 210000000 420000000 - 567 75000 100000 -

The NAS quota policy states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of your grace period remains. It is
expected that users will occasionally exceed their soft limit, as needed; however after 14
days, users who are still over their soft limit will have their batch queue access to Pleiades
disabled.

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

Pleiades Lustre Filesystems 185

mailto:support@nas.nasa.gov

For more information, see also, Quota Policy on Disk Space and Files.

NOTE: If you reach the hard limit while your job is running, the job will die prematurely
without providing useful messages in the PBS output/error files. A Lustre error with code
-122 in the system log file indicates that you are over your quota.

In addition, when a Lustre filesystem is full, jobs writing to it will hang. A Lustre error with
code -28 in the system log file indicates that the filesystem is full. The NAS Control Room
staff normally will send out emails to the top users of a filesystem asking them to clean up
their files.

Important: Backup Policy

As the names suggest, these filesystems are not backed up, so any files that are removed
cannot be restored. Essential data should be stored on Lou1-3 or onto other more
permanent storage.

 Configurations

In the table below, /nobackupp[10-60] have been abbreviated as p[10-60].

Pleiades Lustre Configurations
Filesystem p10 p20 p30 p40 p50 p60
of MDSes 1 1 1 1 1 1
of MDTs 1 1 1 1 1 1
size of MDTs 1.1T 1.0T 1.2T 0.6T 0.6T 0.6T
of usable inodes on
MDTs ~235x10^6 ~115x10^6 ~110x10^6 ~57x10^6 ~113x10^6 ~123x10^6

of OSSes 8 8 8 8 8 8
of OSTs 120 60 120 60 60 60
size/OST 7.2T 7.2T 3.5T 3.5T 7.2T 7.2T
Total Space 862T 431T 422T 213T 431T 431T
Default Stripe Size 4M 4M 4M 4M 4M 4M
Default Stripe Count 1 1 1 1 1 1

NOTE: The default stripe count and stripe size were changed on January 13, 2011. For
directories created prior to this change, if you did not explictly set the stripe count and/or
stripe size, the default values (stripe count 4 and stripe size 1MB) were used. This means
that files created prior to January 13, 2011 had those old default values. After this date,
directories without an explicit setting of stripe count and/or stripe size adopted the new
stripe count of 1 and stripe size of 4MB. However, the old files in that directory will retain
their old default values. New files that you create in these directories will adopt the new

Pleiades Lustre Filesystems 186

default values.

Pleiades Lustre Filesystems 187

Lustre Best Practices

Lustre filesystems are shared among many users and many application processes, which
causes contention for various Lustre resources. This article explains how Lustre I/O works,
and provides best practices fro improving application performance.

 How does Lustre I/O work?

When a client (a compute node from your job) needs to create or access a file, the client
queries the metadata server (MDS) and the metadata target (MDT) for the layout and
location of the file's stripes. Once the file is opened and the client obtains the striping
information, the MDS is no longer involved in the file I/O process. The client interacts
directly with the object storage servers (OSSes) and object storage targets (OSTs) to
perform the I/O operations such as locking, disk allocation, storage, and retrieval.

If multiple clients try to read and write the same part of a file at the same time, the Lustre
distributed lock manager enforces coherency so that all clients see consistent results.

Jobs being run on Pleiades content for shared resources in NAS's Lustre filesystem. The
Lustre server can only handle about 15,000 remote procedure calls (RPCs, inter-process
communications that allow the client to cause a procedure to be executed on the server)
per second. Contention slows the performance of your applications and weakens the
overall health of the Lustre filesystem. To reduce contention and improve performance,
please apply the examples below to your compute jobs, while working in our high-end
computing environment.

 Best Practices

Avoid using ls -l

The ls -l command displays information such as ownership, permission and size of
all files and directories. The information on ownership and permission metadata is
stored on the MDTs. However, the file size metadata is only available from the
OSTs. So, the ls -l command issues RPCs to the MDS/MDT and OSSes/OSTs for
every file/directory to be listed. RPC requests to the OSSes/OSTs are very costly
and can take a long time to complete for many files and directories.

- Use ls by itself if you just want to see if a file exists.

- Use ls -l filename if you want the long listing of a specific file.

•

Avoid having a large number of files in a single directory•

Lustre Best Practices 188

Opening a file keeps a lock on the parent directory. When many files in the same
directory are to be opened, it creates contention. It is better to split a huge number of
files (in the thousands or more) into multiple sub-directories to minimize contention.

Avoid accessing small files on Lustre filesystems

Accessing small files on the Lustre filesystem is not efficient. If possible, keep them
on an NFS-mounted filesystem (such as your home filesystem) or copy them from
Lustre to /tmp on each node at the beginning of the job and access them from there.

•

Use a stripe count of 1 for directories with many small files

If you have to keep small files on Lustre, be aware that stat operations are more
efficient if each small file resides in one OST. Create a directory to keep small files,
set the stripe count to 1 so that only one OST will be needed for each file. This is
useful when you extract source and header files (which are usually very small files)
from a tarfile.

pfe1% mkdir dir_name
pfe1% lfs setstripe -s 1m -c 1 dir_name
pfe1% cd dir_name
pfe1% tar -xf tarfile

If there are large files in the same directory tree, it may be better to allow them to
stripe across more than one OST. You can create a new directory with a larger stripe
count and copy the larger file to that directory. Note that moving files into that
directory with the mv command will not change the strip count of the files. Files must
be created in or copied to a directory to inherit the stripe count properties of a
directory.

pfe1% mkdir dir_count_4
pfe1% lfs setstripe -s 1m -c 4 dir_count_4
pfe1% cp file_count_1 dir_count_4

If you have a directory with many small files (less than 100MB) and a few very large
files (greater than 1GB), then it may be better to create a new subdirectory with a
larger stripe count. Store just the large files and create symbolic links to the large
files using the symlink command.

pfe1% mkdir bigstripe
pfe1% lfs setstripe -c 16 -s 4m bigstripe
pfe1% ln -s bigstripe/large_file large_file

•

Use mtar for creating or extracting a tar file

A modified gnu tar command, /usr/local/bin/mtar, is Lustre stripe aware and will
create tar files or extract files with appropriately sized stripe counts. Currently, the
number of streps is set to the number of gigabytes of the file.

•

Lustre Best Practices 189

Keep copies of your source on the Pleiades home filesystem and/or Lou

Be aware that files under /nobackup[p1,p2,p10-p60] are not backed up. Make sure
that you have copies of your source codes, makefiles, and any other important files
saved on your Pleiades home filesystem or on Lou, the NAS storage system.

•

Avoid accessing executables on Lustre filesystems

There have been a few incidents on Pleiades where users' jobs encountered
problems while accessing their executables on /nobackup. The main issue is that the
Lustre clients can become unmounted temporarily when there is a very high load on
the Lustre filesystem. This can cause a bus error when a job tries to bring the next
set of instructions from the inaccessible executable into memory.

Executables run slower when run from the Lustre filesystem. It is best to run
executables from your home filesystem on Pleiades. On rare occasions, running
executables from the Lustre filesystem can cause executables to be corrupted. Avoid
copying new executable over existing executables of the same within the Lustre
filesystem. The copy causes a window of time (about 20 minutes) where the
executable will not function. Instead, the executable should be accessed from your
home filesystem during runtime.

•

Increase the stripe_count for parallel writes to the same file

When multiple processes are writing blocks of data to the same file in parallel, I/O
performance is better for large files when the stripe_count is set to a larger value.
The stripe count sets the number of OSTs the file will be written to. By default, the
stripe count is set to 1. While this default setting provides for efficient access of
metadata�for example to support "ls -l"&emdash;large files should use stripe counts
of greater than 1. This will increase the aggregate I/O bandwidth by using multiple
OSTs in parallel instead of just one. A rule of thumb is to use a stripe count
approximately equal to the number of gigabytes in the file.

It is also better to make the stripe count be an integral factor of the number of
processes performing the write in parallel so that one achieves load balance among
the OSTs. For example, set the stripe count to 16 instead of 15 when you have 64
processes performing the writes.

•

Limit the number of processes performing parallel I/O

Given that the numbers of OSSes and OSTs on Pleiades are about a hundred or
fewer, there will be contention if a huge number of processes of an application are
involved in parallel I/O. Instead of allowing all processes to do the I/O, choose just a
few processes to do the work. For writes, these few processes should collect the

•

Lustre Best Practices 190

data from other processes before the writes. For reads, these few processes should
read the data and then broadcast the data to others.
Stripe align I/O requests to minimize contention

Stripe aligning means that the processes access files at offsets that correspond to
stripe boundaries. This helps to minimize the number of OSTs a process must
communicate for each I/O request. It also helps to decrease the probability that
multiple processes accessing the same file communicate with the same OST at the
same time.

One way to stripe-align a file is to make the stripe size the same as the amount of
data in the write operations of the program.

•

Avoid repetitive stat operations

Some users have implemented logic in their scripts to test for the existence of certain
files. Such tests generate stat requests to the Lustre server. When the testing
becomes excessive, it creates a significant load on the filesystem. A workaround is
to slow down the testing by adding sleep in the logic. For example, the following user
script tests the existence of the files WAIT and STOP to decide what to do next.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
 end

When neither the WAIT nor STOP file exists, the loop ends up testing for their
existence as fast as possible (on the order of 5000 times per second). Adding a
sleep inside the loop slows down the testing.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
sleep 15

•

Lustre Best Practices 191

 end

Avoid multiple processes opening the same file(s) at the same time

On Lustre filesystems, if multiple processes try to open the same file(s), some
processes will not able to find the file(s) and the job will fail.

The source code can be modified to call the sleep function between I/O operations.
This will reduce the occcurence of multiple access attempts to the same file from
different processes simultaneously.

 100 open(unit,file='filename',IOSTAT=ierr)
 if (ierr.ne.0) then
 ...

call sleep(1)
 go to 100
 endif

When opening a read-only file in Fortran, use ACTION='read' instead of the default
ACTION='readwrite'. The former will reduce contention by not locking the file.

open(unit,file='filename',ACTION='READ',IOSTAT=ierr)

•

Avoid repetitive open/close operations

Opening files and closing files incur overhead and repetitive open/close should be
avoided.

If you intend to open the files for read only, make sure to use ACTION='READ' in the
open statement. If possible, read the files once each and save the results, instead of
reading the files repeatedly.

If you intend to write to a file many times during a run, open the file once at the
beginning of the run. When all writes are done, close the file at the end of the run.

•

Reporting Problems

If you report performance problems with a Lustre filesystem, please be sure to include the
time, hostname, PBS job number, name of the filesystem, and the path of the directory or
file that you are trying to access.Your report will help us correlated issues with recorded
performance data to determine the cause of efficiency problems.

Lustre Best Practices 192

Lustre Filesystem Statistics in PBS Output File

For a PBS job that reads or writes to a Lustre file system, a Lustre filesystem statistics
block will appear in the PBS output file, just above the job's PBS Summary block.
Information provided in the statistics can be helpful in determining the I/O pattern of the job
and assist in identifying possible improvements to your jobs.

The statistics block lists the job's number of Lustre operations and the volume of Lustre I/O
used for each file system. The I/O volume is listed in total, and is broken out by I/O
operation size.

The following Metadata Operations statistics are listed:

open/close of files on the Lustre file system•
stat/statfs are query operations invoked by commands such as "ls -l"•
read/write is the total volume of I/O in gigabytes•

The following is an example of this listing:

==
LUSTRE Filesystem Statistics
--
 nbp10 Metadata Operations
 open close stat statfs read(GB) write(GB)
 1057 1058 1394 0 2 14
Read 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 9 3 1 0 1 0 3 2 319
Write 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 138 13 1 11 36 9 21 37 12479
__
Job Resource Usage Summary for 11111.pbspl1.nas.nasa.gov

 CPU Time Used : 00:03:56
 Real Memory Used : 2464kb
 Walltime Used : 00:04:26
 Exit Status : 0

The read and write operations are further broken down into buckets based on I/O block
size. In the example above, the first bucket reveals that nine data reads occurred in blocks
between 0 and 4 KB in size, three data reads ocurred with block sizes between 4 KB and 8
KB, and so on. The I/O block size data may be affected by library and system operations
and, therefore, could differ from expected values. That is, small reads or writes by the
program might be aggregated into larger operations, and large reads or writes might be
broken into smaller pieces. If there are high counts in the smaller buckets, you should
investigate the I/O pattern of the program for efficiency improvements.

Tips for Improving Lustre I/O

Lustre Filesystem Statistics in PBS Output File 193

See Lustre Best Practices for multiple tips to improve the Lustre I/O performance of your
jobs.

Lustre Filesystem Statistics in PBS Output File 194

	Table of Contents
	Computing at NAS
	Computing Overview

	Computing Hardware
	Pleiades
	Pleiades: Introduction
	Pleiades Hardware Overview
	Pleiades Configuration Details
	Harpertown Processors
	Nehalem-EP Processors
	Westmere Processors
	Comparison among Harpertown, Nehalem-EP and Westmere
	Pleiades Home Filesystem
	Pleiades Lustre Filesystems
	Pleiades Front-End Usage Guidelines
	Pleiades Interconnect

	Columbia
	Columbia: Introduction
	Columbia Hardware Overview
	Columbia Configuration Details
	Columbia Home Filesystems
	Columbia CXFS Filesystems
	Columbia Front-End Usage Guidelines

	Porting & Developing Applications
	Porting & Developing: Overview
	Endian and Related Environment Variables or Compiler Options
	OpenMP
	Compilers
	Intel Compiler
	GNU Compiler Collection

	MPI Libraries
	SGI MPT
	MVAPICH

	Math & Scientific Libraries
	MKL
	SCSL
	MKL FFTW Interface

	Program Development Tools
	Recommended Intel Compiler Debugging Options
	Totalview
	Totalview Debugging on Pleiades
	Totalview Debugging on Columbia
	IDB
	GDB
	Using pdsh_gdb for Debugging Pleiades PBS Jobs

	Porting to Pleiades
	Recommended compiler options
	With SGI's MPT
	With MVAPICH
	With Intel-MPI
	With OpenMP
	With SGI's MPI and Intel OpenMP
	With MVAPICH and Intel OpenMP

	Porting to Columbia
	Default or Recommended compiler version and options
	Porting to Columbia: With SGI's MPT
	Porting to Columbia: With OpenMP
	Porting to Columbia: With MPI and OpenMP

	Software Environment
	Software: Overview
	Operating Systems
	Modules
	Table of All Modules
	Licensed Application Software
	Licensed Application Software: Overview
	Tecplot
	IDL
	LS-DYNA
	Matlab
	Gaussian
	FieldView
	Ensight
	Gridgen

	Running Jobs with PBS
	Portable Batch System (PBS): Overview
	Job Accounting
	Job Accounting Utilities
	Multiple GIDs and Charging to a specific GID
	Commonly Used PBS Commands
	Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line
	New Features in PBS
	Checkpointing and Restart
	PBS Environment Variables
	PBS Scheduling Policy
	PBS exit codes
	Front-End Usage Guidelines
	Pleiades Front-End Usage Guidelines
	Columbia Front-End Usage Guidelines

	PBS on Pleiades
	Overview
	Queue Structure
	Mission Shares Policy on Pleiades
	Resources Request Examples
	Default Variables Set by PBS
	Sample PBS Script for Pleiades
	Pleiades devel Queue

	PBS on Columbia
	Overview
	Resources Request Examples
	Default Variables Set by PBS
	Sample PBS Script for Columbia

	Troubleshooting PBS Jobs
	Common Reasons for Being Unable to Submit Jobs
	Common Reasons Why Jobs Won't Start
	Using pdsh_gdb for Debugging Pleiades PBS Jobs

	Effective Use of PBS
	Streamlining File Transfers from Pleiades Compute Nodes to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Running Multiple Serial Jobs to Reduce Walltime
	Checking the Time Remaining in a PBS Job from a Fortran Code

	Best Practices
	Streamlining File Transfers from Pleiades Compute Nodes to Lou
	Increasing File Transfer Rates
	Effective Use of Resources with PBS
	Streamlining File Transfers from Pleiades Compute Nodes to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Running Multiple Serial Jobs to Reduce Walltime
	Checking the Time Remaining in a PBS Job from a Fortran Code

	Memory Usage on Pleiades
	Memory Usage Overview
	Checking memory usage of a batch job using qps
	Checking memory usage pf a batch job using qtop.pl
	Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo"
	Checking memory usage of a batch job using gm.x
	Checking if a Job was Killed by the OOM Killer
	How to get more memory for your job

	Lustre on Pleiades
	Lustre Basics
	Pleiades Lustre Filesystems
	Lustre Best Practices
	Lustre Filesystem Statistics in PBS Output File

